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Abstract

Astrophysics and fundamental physics converge in the study of neutron
stars. In this thesis, I will examine how intense magnetic fields influence
physical processes in the vicinity of and inside neutron stars.

Even with the absence of matter, an intense magnetic field can have
dramatic effects on the propagation of electromagnetic radiation and the
structure of a dipole field. To understand these effects, we first derive a com-
pact analytic form for the effective Lagrangian of quantum electrodynamics
(QED) with an external field. An intense field modifies the propagators of
the virtual electron-positron pairs formed as a photon travels. We first treat
the effects of QED as an effective magnetic permeability and electric per-
mittivity. Using the macroscopic Maxwell equations it is straightforward
to derive compact expressions for the index of refraction of a low-frequency
photon traveling through an electric or magnetic field. Also in the same
manner we examine the one-loop corrections to a macroscopic magnetic
dipole and find that the non-linear paramagnetic properties of the vacuum
result in dipole, hexapole, 2n-pole moments which are a function of distance
from the dipole.

The speed of light in a magnetized vacuum is slightly less than ¢ and is
a function of the strength of the fields. We propose an experiment using the
existing LIGO testbed interferometer which can measure this effect with a
signal-to-noise ratio of fifteen within a week to several months depending
on the size and strength of the magnet used. If successful, this would be
the first direct measurement of the photon-photon coupling with a uniform
external field, one of the original predictions of QED. Also, since the speed
of light is a function of the strength of the local field, we expect an intense
magnetic field to affect the propagation of an electromagnetic wave. We
treat the electromagnetic field as a relativistic fluid and derive the equations
for the characteristics. The characteristics of the wave begin to cross after
a number of wavelengths which depends on the strength of the wave and of
the external field. A shock forms. The energy of the wave dissipates into
electron-positron pairs shortly thereafter.

xiii



xiv ABSTRACT

We next discuss how an intense magnetic field affects atomic structure.
First using a simple, yet accurate model for a hydrogen atom in an intense
magnetic field, we find that the bound electron shields the nucleus quite
effectively and that the cross section for nuclear fusion reactions is dramat-
ically increased. We then revisit the study of atomic structure and develop
both an analytic and a convenient numerical technique to accurately study
the properties of simple atoms and molecules in an intense magnetic field.

Again we increase the scale from atomic physics to solid-state physics to
understand how an intense magnetic field affects the transmission of heat
through the envelope of a cooling neutron star. We develop a plane-parallel
analytic treatment of the neutron star envelope in a sufficient intense mag-
netic field and find that the surface emission in this limit is proportional to
the square of the cosine of the angle between the radial direction and the
magnetic field, the cos? 9 rule. This observation with the assumption that
the neutron star surface radiates as a blackbody allows us to calculate the
observed spectra from a neutron star including the effects of the deflection
of null geodesics by the intense gravitational field of the neutron star.

We reexamine the problem of heat flow for weaker fields by numerically
integrating the thermal structure of the envelope, again in the plane-parallel
approximation. We derive the relationship between core temperature and
transmitted flux over a wide range of field strengths and geometries. We
find that in weaker fields especially for warmer neutron stars the cos? 1 rule
is less accurate and a dipolar magnetic field introduces only a negligible
perturbation on the moment of inertia of the neutron star.

Combining the results of this study of neutron star envelopes with a
model for the cooling of a neutron star, we explore how an intense mag-
netic field affects the observed flux from neutron stars with both iron and
light-element envelopes. We find that although a magnetic field strongly
affects the thermal evolution of the neutron star, the effect of altering the
composition of the envelope is more dramatic. We propose that the emis-
sion from anomalous X-ray pulsars is simply the surface thermal emission
from isolated neutron stars.
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Chapter 1

Introduction

1.1 Physical Overview

Neutron stars are among the most extreme objects studied by physicists.
They are the remnants of one of the most energetic phenomena in the
universe, a supernova. A supernova’s violent explosion results from the
even more violent implosion of a massive star’s core to nuclear densities.
After the implosion, the stellar core has a radius of ten kilometers yet
comprises the mass of one and a half suns. It is now a neutron star.

The supernova has merged the astronomical with the commonplace. Not
only is the size of a neutron star extremely small by astronomical standards
and usual by laboratory standards, in many respects they are described by
theories more familiar to the condensed matter and plasma physicist than
to the astrophysicist. The central region of the neutron star is likely to
consist of neutron and proton superfluids with sufficient electrons present
to maintain charge neutrality. The outermost kilometer consists of nuclei
and free electrons, a metal, and the final quarter kilometer insulates the
core of the neutron star from space. Here, the flow of heat is impeded as
electrons scatter off of nuclei and phonons, and the temperature declines
from several tens or hundreds of million of degrees to a million degrees or
so. The properties of this outermost 250 meters determine the luminosity of
the cooling neutron star and how it will appear to X-ray telescopes orbiting
the Earth.

During the collapse, not only is matter compressed, but the magnetic
field of the progenitor star is compressed and may be amplified up to ~
10'? G and beyond. Although Baade and Zwicky proposed in 1934 that
neutron stars may be formed in supernova explosions, it was not until
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1967 that the first neutron star was discovered (Hewish et al. 1968). The
rotation of its intense magnetic field generates a pulsating radio signal, and
the object was identified as a pulsar. Since then nearly one-thousand radio
pulsars have been discovered (Taylor, Manchester & Lyne 1993), and many
types of objects have been associated with intensely magnetized neutron
stars.

This thesis focuses on how an intense magnetic field affects the physical
processes in and near neutron stars. Even laboratory magnetic fields can
have a dramatic effect on matter. The weak magnetic field of the Earth of
about one gauss is sufficient to magnetize ferromagnetic materials and align
them along the direction of the field. Some aquatic bacteria carry nodules
of magnetite to orient themselves along the Earth’s inclined magnetic field
and swim toward the mud (Balkemore & Frankel 1981). Magnetic fields
ten thousand times stronger than the Earth’s (10* G) are routinely used in
magnetic resonance imaging (MRI) and in particle accelerators. Magnetic
fields much stronger than this tend to crush the apparatus which generates
them; consequently, the strongest magnetic fields produced on Earth are
about a megagauss.

Magnetic fields yet a thousand times larger crush not only bulk mate-
rial but the atoms that make matter. Fields stronger than 10° G dominate
the electrostatic forces that determine the structure of ordinary matter.
Magnetic fields stronger than this effectively confine electrons to move in
one dimension along the direction of the magnetic field. Furthermore, the
fact that the motion of the electrons perpendicular to the field is quantized
(e.9. Landau & Lifshitz 1989) becomes crucial in understanding the prop-
erties of the material. Atoms become cylindrical, and heat flows efficiently
only along the magnetic field lines. Throughout this thesis we will designate
magnetic fields sufficiently strong to dominate atomic structure, as intense
magnetic fields (IMFs). The most weakly magnetized neutron stars which
have been detected as pulsars, the millisecond pulsars have B ~ 10® G.

Increasing the strength of the magnetic field one hundred thousand
times further to ~ 10'® G uncovers new phenomena. At this field strength,
the energy spacing between the cyclotron levels of an electron is comparable
to its rest mass energy. A comparably strong electric field will short itself
out even in vacuo by producing electron-positron pairs (see Chapter 2);
this is the Klein paradox of relativistic quantum mechanics (e.g. Bjorken &
Drell 1964). A magnetic field is not unstable in this way, and several pul-
sars have been observed which have field strengths approaching the so called
quantum critical field of 4.4 x 10*® G (Taylor, Manchester & Lyne 1993).
In this ultramagnetized regime, the magnetic field magnetizes the vacuum
itself.

The magnetization and polarization of the vacuum have dramatic effects
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on the electromagnetic fields near a neutron star. The vacuum acts as a
nonlinear dielectric. Photons traveling through an intense magnetic field
may split into two or coalesce. Even a static magnetic field is altered by the
induced magnetization of the surrounding vacuum. The nonlinearity of the
electromagnetic field may explain features of the emission from the surface
of neutron stars as well as the mechanism that generates the pulsating radio
emission that belied the existence of the first discovered neutron stars.

The next milestone along the path of ever increasing magnetic field
strengths lies at 1.2 x 10'® G. At this field strength, the characteristic cy-
clotron energy of the W particle is comparable to its rest-mass energy, and
the unification of electromagnetism into the electroweak theory is crucial.
Above this field strength, the nonabelian character of the electroweak the-
ory may dramatically complicate the dynamics.

1.2 Thesis Outline

This thesis is organized into four independent parts. Each part may be
considered separately from the others.

The first part discusses how an ultrastrong magnetic field affects the
structure of the vacuum within the framework of quantum electrodynamics
(QED). Chapter 2 presents a simple analytic form for the effective La-
grangian of QED and applies this result to pair production in an intense
electric field and the splitting of photons at low energies. Chapter 3 and
Chapter 4 explore the paramagnetic and dielectric properties of an intense
field. Both Chapter 4 and Chapter 6 focus on the nonlinear properties of
the electromagnetic field. The first chapter examines how the static field
on a magnetic dipole is altered by the nonlinear paramagnetic vacuum sur-
rounding it. The latter chapter discusses the propagation of electromagnetic
waves through an intense magnetic field and argues that the nonlinearity of
the vacuum can lead to the formation of electromagnetic shocks. The final
chapter (Chapter 5) of the first part proposes an experiment to measure
the nonlinear properties of the vacuum in QED.

The second part focuses on the effects of an intense magnetic field on
the structure of atoms. An intense magnetic field compresses an atom both
along and transverse to the field lines. Since the electron cloud surrounding
the nucleus is much more compact than without a magnetic field, we con-
sider the possibility that bound electrons can effectively screen the nuclei
from each other, allowing nuclear reactions to proceed (Chapter 7). The
second chapter (Chapter 8) examines the structure hydrogen and helium,
atoms and molecules in an intense magnetic field more precisely, delving
into magnetic chemistry.
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The core of a neutron star is insulated from the surrounding vacuum by
a thin envelope. This envelope determines the rate of thermal emission from
the surface of an isolated neutron. Chapter 9 presents an analytic treatment
to study the envelopes of ultramagnetized neutron stars (B > 10* G), while
Chapter 9 treats the same problem numerically focusing on weaker fields
(102 G > B > 10 Q).

The final part translates the results of the third part into the observable
realm. It examines the properties of cooling neutron stars in three regimes.
Chapter 11 focuses on neutron stars with B > 10 G and envelopes which
consists of iron. Chapter 12 contrasts the early cooling (1000 yr < t <
108 yr) of neutron stars with iron and light element envelopes. The final
chapter (Chapter 13) discusses the cooling of neutron stars with a range
of field strengths and compositions during the epoch where photon and
neutrino cooling compete (¢t ~ 106 yr).



Part 1

Magnetic Fields and the
Vacuum






Chapter 2

An Analytic Form for the
Eective Lagrangian of
QED and its Application
to Pair Production and
Photon Splitting

SUMMARY

We derive an analytic form for the Heisenberg-FEuler Lagrangian in the limit
where the component of the electric field parallel to the magnetic field is
small. We expand these analytic functions to all orders in the field strength
(Fuw F* ) in the limits of weak and strong fields, and use these functions
to estimate the pair-production rate in arbitrarily strong electric fields and
the photon-splitting rate in arbitrarily strong magnetic fields.

2.1 Introduction: The One-Loop Effective La-
grangian of QED

When one-loop corrections are included in the Lagrangian of the electro-
magnetic field one obtains a non-linear correction term:

L="Lo+ L. (2.1)

7



8 STRONG-FIELD QED LAGRANGIAN

Both terms of the Lagrangian can be written in terms of the Lorentz in-
variants,

I =F,F" =2(BJ”-|E]) (2.2)

and
K = {M" F\,F,,}? = —(4E - B)?, (2.3)

following Heisenberg & Euler (1936). We do not expect terms which are odd
powers of e’\”“"FApFM to appear in the effective Lagrangian as these terms
would yield a Lagrangian which would violate the C' and P symmetries of
the tree-level Lagrangian.

Heisenberg & Euler (1936) and Weisskopf (1936) independently derived
the effective Lagrangian of the electromagnetic field using electron-hole
theory. Schwinger (1951) later rederived the same result using quantum
electrodynamics. In rationalized electromagnetic units, the Lagrangian is
given by

1

Lo = -1 (24)
ez [ _.d¢ v-K

= - (20 ¢?

Ly hc/o e 3{ZC 7 X

cos(Bik —%—HV;K)—}—COS(B% —%—zV;K>
(2.5)
cos(BL —£+ZV;K>—COS(B% —%—’LV;K)
C2

+|Bk|2+€.7 : (2.6)

where B, = Ej, = "fhcs ~ 2.2x10% Vem ! ~ 4.4x10'3 G. Both Heisenberg
& Euler (1936), and Mielniczuk (1982) present alternative expressions for
these integrals in terms of infinite series.

2.2 The Analytic Expansion

For many interesting problems, one needs an expansion of this Lagrangian
in the limit where the component of the electric field in the direction of the
magnetic field is small (small K)

351 K2 6251
£1:£1(I,0)+K— + —
OK ko 2 OK? g,

2.7)
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where the terms are given by the following integrals

2
L0 = 2% (%)

eI [* du u?
— —u/¢
= E§/O eV e (—ucothu+ 1+ ?> (2.8)
21 1
I ()
K=o c 161 13
e 1 [* _,edu
- - = —u/§22 h
he 161/0 ¢ u? (COt “
2
- qu cothu — u csch? u) (2.9)
62£1 62 1 1
K2 = amapaz |z
0K? |,_, hc 3841 £
| e d .
= %38413/ e_”/gu—g(—9ucsch2u—4u3csch2u
+ 2u? cothu + 15 cothu
8
1—5u % coth u — 6u? coth® ) (2.10)

and we have defined

1 1 ¢ [T
£= Bk\[a du= B\ (2.11)

Note that £ is a dimensionless measure of the strength of the field.
The auxiliary functions X; may be calculated analyically:

z/2-1
Xo(x) = 4/ In(T (v+1))dv+—1n< )+21n47r—41nA—§1n2
0
[1n47r+1—|—1n <l>]$+ [ lln(Q)] z? (2.12)
x 2 T
21
Xi(z) = —2Xo(z)+2X(" (@) + Xé”( )~ 52 (2.13)
Xo(z) = —24Xo(z )+9:1:X(1)(;L') (8+3m )X(2)( )+4:I:Xé3)($)
8 (1) 8 1 161
Y Wt Eat A (2.14)
where i
X (r) = LXolo) (2.15)

dz™
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Because of the near symmetry between I and K in Equation 2.6, higher
derivatives with respect to K may be calculated in principle, and repre-
sented by a sum of derivatives of £(I,0) with respect to I. The constant A
is defined as

. L n? n 1 n?
InA = nh_)n;o (;zlnz>—[(7+§+ﬁ)lnn—z] (2.16)

= 1—12 — ¢W(=1) = 0.248754477, (2.17)

in analogy to the Euler-Mascheroni constant (Barnes 1900). Here ¢V (x)
denotes the first derivative of the Riemann Zeta function.

Barnes (1900) evaluates the definite integral of InT'(z) in terms of the
G-function

z/2—1 . - -
/0 In(T(v +1))dv = (5 - 1) InT (5) —InG (5)

22 oz 1
-5+ 7 (1+In27) - S In2r.(2.18)

k
<1+ 2 ; 1) 61_Z+(z;k1>2] ‘

(2.19)
The integral of InT'(z) may also be expressed in terms of the generalized
Riemann Zeta function (Dittrich, Tsai & Zimmermann 1979)

[ e = (5 -1) -0+ B ()

_%(5_1)+(g—1)1n(§—1) (2.20)

Our expression for X was also found by Dittrich, Tsai & Zimmermann (1979).
Ivanov (1992) derived a similar expression as well, but his result differs from
ours and that of Dittrich et al. in the constant term. Unlike Ivanov’s ex-
pression, ours approaches zero as & goes to 0 which from examination of
Equation 2.8 is the correct limiting behavior. In addition, the above form
for Xy reproduces the asymptotic strong-field limit given by Heisenberg &
Euler (1936).

These functions can be expanded in both the weak-field and strong-field
limits. In the weak-field limit (£ < 0.5) we obtain

1 - S 22jBZ’(J'+1) 25
%(5) = Lot 221

where

2-1 _z(z=1) __(z2=1)2 s
Gz)=02n) 7T e =z e 7 2 H
k=1

=1
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1 14 1 = 227 (6Bay(j41) — (25 + 1)Bsj)
X (2) = —Zg2y = J 17627 (2.22
1(5) 15 +3Z:2 J2j+1) ere
1 1 2%
Xo E = 15 Z 7 2j(2j = 1)By(j—1) + 60(j — 1) By;
7j=3
- 180 B2(]+1)]§ 7 (2.23)

where B; denotes the jth Bernoulli number. In the strong-field limit (§ >
0.5), we obtain

Xo<%> = (%ln2—4lnA+%1n§>+(1—1n7f+ln€)f1
+<%(ln2—’y)+%+%ln5>§_2

S ED L e (2.24)

<ln7r+—7r -2 1n§) 5_1—}—(—%—%((3)) €2

+Y S 22—+ e+ ) e 20)

(-1
7j=3
1 16 4
X, (Z) = 1—553—4§+(—6—87+EC(3)+96111A>
+( 27 + 72 —151n7r—%77 —151n§>§
. (;c —9- 4¢(3)) =
> 3G +0G-2) .
+,Z 212 iG-n V7Y

+G+2) (cG+ =T +9) €. @20)

The Lagrangian may also be expanded in terms of the invariants them-
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selves or the electric and magnetic fields. In the weak-field limit we obtain

1 e ,(I2 213 25

Ly 71 B MP 229
K |_ 20hc B " 195 ' 147 B ‘
9Ly 19 ¢ 1 880 I 66324 I?

9K? |,_, 15120 hc BY ( ~200B2 T 2T BE T ) (2.29)

This weak-field expansion agrees with the Heisenberg & Euler (1936) result.
In the strong-field limit, for direct comparison with Heisenberg & Eu-
ler (1936) we define a = E//Ey, and b= B/By, and take the limit b > 1 and

a< 1. We take, 2 =b>—a?, £ b— % and K = —16B; (ab)?. We obtain

2
Li(a,b) = 45B?

he 12

+lnb+ 3 +1n2—
16 8

(Inb+1n2—~)

612 a4
(G tggt )t

b2(M—l A—}—ln—2> %(lnb+1—ln7r)

8
a?
1_

= (2.30)

which agrees numerically with the corresponding expansion in Heisenberg
& Euler (1936).

2.3 Pair Production in an Arbitrarily Strong
Electric Field

In a strong electric field with no magnetic field, the value of the first invari-
ant is negative, I = —2|E|? and K = 0. The analytic expressions for the
Lagrangian are valid for values of ¢ throughout the complex plane, with a
branch cut along the negative real axis. Using an imaginary value of

E
=i{—=) =i 2.31
3 l<Ek> iy, y >0 (2.31)
and taking w = 2(4wh)~! Im L gives the pair production rate per unit

volume (Berestetskii, Lifshitz & Pitaevskii 1982). From examination of
Equation 2.21, for £ < 0.5 the pair-production rate is apparently zero.
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However, since Equation 2.21 is a power series in £/2, the imaginary part
of X may be exponentially small. Berestetskii, Lifshitz & Pitaevskii (1982)
derive for a weak field,

1 (RN n )\ u

To simplify the numerics we use an alternate definition of Xy(z) obtained
by means of a change of variables

Xo(z) = 4(%—1)/011n<1"‘(u(;—1)+1))du+%ln<%>

+2Indr — (4ln A + §In2) - [ln4ﬂ'+1+ln (l)] z
z

N B +im (%)] 2. (2.33)

With this definition and the property of the Gamma function, InT'(Z) =
InT'(z), we see that Xo(Z) = Xo(x), so

w = 2(47Th)_1 Im £|I:—2y2E§,K:0

e> i i
i (60 () - ()
812h%¢ 34 0 Y 0 Y
_ 1 (NN
T 872 \me mc?

1
—2y(Iny +1In4r + 1) + 4yRe Q(y) + o

Qly) = /01 In (F (u (;—y -~ 1) + 1)) du (2.35)

and the scaling constant

1 -3 —1
( f ) ( f ) = 1.7 x 10°*em™3s™1. (2.36)

1
- gmf - 8y*Im Q(y)

(2.34)

where

872 \me mec2

This expression for w, the pair-production rate, agrees numerically with the
results of Itzykson & Zuber (1980) for an arbitrarily strong electric field.



14 STRONG-FIELD QED LAGRANGIAN
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Figure 2.1: The left panel depicts the imaginary part of Xy as a func-
tion of 1/y. For weak fields the imaginary component is approximately
n~lexp(—m/y). The right panel depicts the pair-production rate for near
and super-critical fields.

In the strong-field limit we use Equation 2.24 and take the imaginary

part
_ L (AN
wo= 872 \me mec2

™ - (—1)3k (2k) —(2k—1)
+g+ ; P Eak L 1Y (2.37)

- gyz +2(1-Inw+1Iny)y

2h-1k(2k + 1)

Figure 2.1 depicts the imaginary component of Xq for I = —2y?E? and
the pair-production rate per unit volume. From the left panel, we verify
that the imaginary component of X is approximately 7~ exp(—n/y) for
weak fields. The right panel shows the pair-production rate which increases
as y? for strong fields and is damped exponentially in weak fields.

2.4 Auxiliary Functions for Photon Splitting

To calculate the photon splitting rates we follow the technique by Adler (1971)
for the low-frequency limit. In this limit, Adler expresses the opacity for
photon spliting by means of auxiliary functions which are simply derivatives
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of the Lagrangian and therefore of the functions X; above

a8 B e WP 5
Bl =1+ = 55 55218 sin” 055C1(¢) (2.38)
3 . 6 5 2
- 5= (%) () () e
= 17.0cm™ (B;:Q)ﬁ(%Ya@f (2.40)
k| =L+ 1] = %%B%inﬁeg—;@(oZ (2.41)
K[L= ||+ 1] = 2%%3%%0;—;@(@2, (2.42)

The conversion of L to ||+ L proceeds through two channels hence the
two-fold increase in the opacity for this process. C; and Cy are defined by

3 3
0° L adier _ 64 0°Ly (2.43)
OF3 g:o,}':%B2 4r OI3 K=0,I=2B2
a?h® a
= —53 520016 = 555 51 (€) (2:44)
3 2
9L adier CAd‘;f _ 128 0L (2.45)
OF0G G=0,F=1B2 4w OIOK K=0,I=2B?
o

and 6 is the angle between the direction of propagation of the photon and
the external magnetic field. The factors of 128 and 64 result from the
definitions of Adler’s F and G in terms of I and K,
1 I
F o= L(BP-EP)=; (2.47)
2 4
1
G = B-E= Z\/—K (2.48)
An additional factor of 47 appears because we are using rationalized Gaus-
sian units while Adler employs unrationalized units.
Given the analytic forms for Xy and X; we obtain

Ci(§) = % (Xé3) (%) +3x37 (%) ¢ —3xY (%) 52) (2.49)

Qo))

2

—~

)

~
|
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The functions, Cy and Cy, have the appropriate limits as & — 0 which
correspond to the lowest order hexagon diagrams for the splitting process,

CiI) = 1622] it 32311192(#1) (Bz)“ (2.51)
_ 6. %_%%_F%(B%)Q... (2.54)

In the strong field limit we obtain

e = §£—4—§£—5 (ln£ I + ) £

= 2, ¢ - 1g (2.55)
j=3
C2(8) = %6 +& <é+;7 41nA)

3 ) 1 1. 1
+Z§ 5(1115 1n7r+§—1—87r2>+§§ 6(1+§C(3))

© (G2 -2) (-1, G .
> <j(j_1)+6(j_2))5 b 250)

+
7j=3

These expressions for the photon-splitting rate are only valid in the low-
frequency limit since the Heisenberg-Euler Lagrangian neglects the gradi-
ents of the field. When these gradients are neglected, the results from
Schwinger’s proper-time integration (1951) used by Adler (1971) reduce
to these results obtained from the Heisenberg-Euler Lagrangian. Baler,
Milstein & Shaisultanov (1996) have also obtained similar results for arbi-
trary field strengths (and photon frequencies) using an operator diagram
technique.

Baier et al. and Adler’s methods differ in spirit but yield the same
results. Baier, Katkov & Strakhovenko (1975a) developed the operator di-
agram technique. In this formalism, the photon splitting matrix element
is evaluated with Feynman diagrams (Baler, Katkov & Strakhovenko 1975b)
using electron propagators in an external field. On the other hand, Adler (1971)
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calculates the expectation value of the current ((j,(z))) order by order in
the external photon fields using Schwinger’s formalism (1951) and relates
this expectation value to the photon-splitting matrix element.

2.5 Photon Splitting Opacities and Applica-
tion to Neutron Stars

Adler (1971) argues that because of dispersive effects, the process || —L
+ 1, dominates the opacity of photons travelling through a strong field.
Therefore, we are interested in the function C3(§) which determines the
splitting rate for all magnetic field strengths at photon energies small com-
pared to the mass of the electron. We see immediately from the expansions
of Cy that the opacity has the following behavior for weak and strong fields

\6
0116cm™! (E522)" (24)" B < B,

mc?

&l =L+ 1] = (2.57)
0.472cm 1 sin® 6 (1) B> B,

mc?

We find, in agreement with the recent result of Baier, Milstein & Shaisul-
tanov (1996) and as well as with earlier results (Thompson & Duncan 1995,
Baring 1995) that the photon splitting opacity approaches a constant value
in the limit of strong fields.

The left panel of Figure 2.2 depicts the opacity for photons with E =
mc? as a function of £. Our formulae are not valid for these high-energy
photons but for low energies the opacity scales as this quantity times the
photon energy to the fifth power. The right panel applies these opacities to
neutron stars. Neutron stars are observed to have magnetic fields ~ 1012 G
(e.g. Shapiro & Teukolsky 1983) and a subset of these objects known as
magnetars are suspected to have much stronger fields ~ 106 G or larger
(Duncan & Thompson 1992). The figure illustrates the energy of photons
with a mean-free path of ten kilometers. All parallel-polarized photons with
this energy or larger would tranverse an optical depth of one or larger while
escaping from the neutron star.

2.6 Conclusion

Because of the asymptotic behavior of the function C2(£), even in im-
mensely large fields, the photons with energies less than 37 keV have opac-
ities less than (10 km)~!. This energy corresponds to a temperature of
4 x 10® K, so we must conclude that unless the strong magnetic field of
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Figure 2.2: The left panel depicts the photon-splitting opacity for photons
with E = mc? as a function £ and B (upper axis). The right panel shows
the energy of photons with a mean-free path for splitting of ten kilometers
as a function £ and B

the neutron star extends over a distance much greater than 10 km, photon
splitting affects the thermal radiation of only the youngest neutron stars.

We have derived a closed form expression for the Heisenberg-Euler ef-
fective Lagrangian for quantum electrodynamics as a function of the gauge
and Lorentz invariant quantities I and K in the limit of small K. We
have calculated from this analytic expression the photon-splitting and pair-
production rates in the intense field and found them to agree with previous
work. Furthermore, the expressions for the dielectric and permeability ten-
sors in an external field derived from our analytic expression also agree
with previous results (Heyl & Hernquist 1997c). We expect that these
expressions may be applied to a wide variety of problems in strong electro-
magnetic fields, including Compton scattering, photon-photon scattering,
and bremsstrahlung.



Chapter 3

Birefringence and
Dichroism of the QED
Vacuum

SUMMARY

We use an analytic form for the Heisenberg-Fuler Lagrangian to calculate
the birefringent and dichroic properties of the vacuum for arbitrarily strong
wrenchless fields.

3.1 Introduction

In the presence of a strong external field, the vacuum reacts, becoming
magnetized and polarized. The index of refraction, magnetic permeability,
and dielectric constant of the vacuum are straightforward to calculate us-
ing quantum electrodynamic one-loop corrections (Klein & Nigam 1964a,
Klein & Nigam 1964b, Erber 1966, Adler 1971, Berestetskii, Lifshitz &
Pitaevskii 1982, Mielnieczuk, Lamm & Valluri 1988). In this paper, we
calculate the magnetic permeability and dielectric tensors of an external
electric or magnetic field of arbitrary strength in terms of special functions.
We combine these general results to calculate the complex-valued index of
refraction as a function of field strength.

19
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3.2 The Permeability and Polarizability of the
Vacuum

When one-loop corrections are included in the Lagrangian of the electro-
magnetic field one obtains a non-linear correction term:

L=Ly+ L. (31)

Both terms of the Lagrangian can be written in terms of the Lorentz in-
variants,
I=F,F" =2(BJ” - |E]) (3.2)

and

1 2
= (2FF) ~ —(4E-B)’, (3.3)

following Heisenberg & Euler (1936). We use Greek indices to count over
space and time components (0,1,2,3) and Roman indices to count over
spatial components only (1,2,3), and repeated indices imply summation.
Heisenberg & Euler (1936) and Weisskopf (1936) independently derived
the effective Lagrangian of the electromagnetic field using electron-hole
theory. Schwinger (1951) later rederived the same result using quantum
electrodynamics. In Heaviside-Lorentz units, Lagrangian is given by

1
£0 = —ZI, (34)
e [ d¢ v—-K
- - )2y
L1 hc/o e C3{1C 7] X
cos(B% —é+zV;K>+cos(B%c —%—ngK>
(3.5)
cos(B% —%—HVEK)—COS<B%c —%—zV;K)
CQ
+|B |2+€I : (3.6)

where By = Ej, = ¢ 1.3 x 10" Vem ™ ~ 4.4 x 1013 G,
In the weak field limit Heisenberg & Euler (1936) give

1 21 7 1 13
~—-T+E;— I’ - -K -4+ ZKI)---
Lr—gl+ khc[on;g( i )+630E,§< *3 ) ]
3.7)
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We define a dimensionless parameter £ to characterize the field strength

1 /I
= E—k\@ (3.8)

and use the analytic expansion of this Lagrangian for small K derived by
Heyl & Hernquist (1997b):

0Ly K? 0°Ly

L1=L(T,00+ K 22|+ N (3.9)
0K |y 2 OKZ|,_,
The first two terms of this expansion are given by
eI 1
1 = —=Xo|= 1
o = 5o5%(3), 3.10)
6[:1 62 1 1
— = —Xi (= A1
K | o he 1617 (g) (3:11)
where
z/2—1 1 1 5
Xo(z) = 4/ In(T(v + 1))dv + gln (E) +2Ind4r —4ln A — 51112
0
1 3 1. (2)] ,
—[1n47r+1—|—1n (E)]x+[z+§ln(§)]m , (3.12)
- (1) 25 21
Xi(z) = —2Xo(z)+zXy ' (z)+ §X0 (z) — e (3.13)
and
n d"Xo(.Z‘)
X{z) = g (3.14)
Ind = % —¢MW(=1) ~ 0.2488. (3.15)

where ¢((M)(z) denotes the first derivative of the Riemann Zeta function.
We will treat the vacuum as a polarizable medium. In the Heaviside-
Lorentz system, the macroscopic fields are given by the generalized mo-
menta conjugate to the fields (Berestetskii, Lifshitz & Pitaevskii 1982)
oL oL 0L, 0L
D=-—-=E+P, H= -~ =B-M, P= -2 M= —2. (3.1
oE T B : 9E’ B 310
We define the vacuum dielectric and inverse magnetic permeability tensors
as follows (Jackson 1975)
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Using the definitions of I and K, we get

0Ly 0Ly

G = 0y—45te - 32 BB, (3.18)
pij = 0ij— 6;[1519 +32ZLIEE (3.19)

If we use the weak-field limit (Equation 3.7), we recover the results of Klein
& Nigam (1964a)

1 «

€ij = (5ij + 45—7TB_I% [2(E2 — Bz)éij =+ 7BzBJ] , (320)
1 «

pij = i+ BB [2(E? — B?)8;; — TE; Ej) (3.21)

where the fine-structure constant, a = €2 /hc in these units.
For wrenchless (K = 0) fields of arbitrary strength we use Equation 3.12
and Equation 3.13 to get

- e ()
1 B;B;j 1 [/ a\2]
e ix, (E>}+O (%) (3.22)
-2 ) )
1 EzE 1 [/ o \2]
S (el)] o

The expression for y with only an external magnetic field agrees numerically
with the results of Mielnieczuk, Lamm & Valluri (1988).

To examine wave propagation, we must first linearize the relations
(Equation 3.16) in the fields of the wave (E,B) (Adler 1971) and obtain a
second set of matrices,

~ %L
€ij = 9E.0E;’ (3.24)
~ 496 0L, 2Ly . 0L
= 0y =450 + 1655 BiE, — (64K6K2 326K)BBJ
%Ly

dIOK
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L
o L
Fi = “aBaB; (3.26)
B ALy Ly 2Ly dL,
= 0y~ 4578y — 165 BiB; + (64K oz T 326—K> E;E;
+ 128(E - B)& (E;B; + E;B;) (3.27)
IoK ~ I T I '

We use these matrices in the macroscopic Maxwell equations. To first order,
H||B and DJ|E, so we obtain the wave equation,

- ¢ OE

2 _—_ =
VE- 5o (3.28)

and similarly for B.
In Equation 3.28, i’ and € are the ratios of the macroscopic to the
microscopic fields, i.e. H = 'B The waves travel at a definite velocity

v = ¢4/ ' /€ and the index of refraction is n = /€/p'".
If we take an external magnetic field parallel to the 3 axis, we obtain

~ [ 1 1 1\]
o = aufie g lom () + o ()]}
_ 5,.35j3%X1 (%) 10 [(%)2] , (3.29)

i - g (- ()

+0 [(%)2] . (3.30)

In this case, we have the magnetic field of the wave either perpendicular
to the plane containing the external magnetic field and the direction of
propagation (k), L mode, or in that plane, || mode (Berestetskii, Lifshitz
& Pitaevskii 1982). For the L mode, we obtain

n,=1- %Xl (%) sin? + O [(%)2] (3.31)

where 6 is the angle between the direction of propagation and the external
field. And for the || mode, we obtain

n =1+ [Xg2> (%) ¢ - x{V (%) g—l] sin” 0+ O {(%)2] . (3.32)
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The expressions for n),n obtained here are equivalent to those obtained
by Tsai & Erber (1975) through direct calculation of the photon propagator
to one-loop accuracy in the presence of the external field.

If we take an external electric field parallel to the 3 axis, we obtain

- 1 1 1
= o {1 g [ () + e (5)]}

g e (e ()]

+0 [(%)2] , (3.33)
b -l (e ()
- 5,-35j3%X1 (%) +0 [(%)2] . (3.34)

In this case, the propagation modes have the electric field (E) either in the
k — E plane (|| mode) or or perpendicular to the plane. For an external
electric field, we define 5

E=1y= ZEk (3.35)
and substitute this into Equation 3.31 and Equation 3.32. This yields
indices of refraction

_ a 1Y ., a2
ny, = 1+ EXI (a) sin” 0+ O [(2%) ] , (3.36)
B a 2 i\ o o T\ 1] .
npo= 14+ {Xé)(—g)y 2 _ix| (—;)y 1] sin” 4
a2
+0 [(%) ] (3.37)

where 6 again refers to the angle between the direction of propagation and
the external electric field.
In the weak-field limit, we have (Heyl & Hernquist 1997b)

()

X (%)5—2__A3U (%)5—4 = SEH0E).  (339)

An external electric field gives €2 < 0 and an external magnetic field gives
€2 > 0, therefore n 1,7n) > 1 in the weak-field limit for both cases. Using

14 .
—EE+0E),  (339)
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this limit in Equation 3.32 and Equation 3.31 yields weak-field expressions
for the index of refraction in a magnetic field in agreement with earlier work
(Adler 1971, Berestetskii, Lifshitz & Pitaevskii 1982).

3.2.1 Series and asymptotic expressions
To calculate the indices of refraction in the weak and strong field limit, we

use the expansions of Heyl & Hernquist (1997b). For an external magnetic
field, in the weak-field limit (£ < 0.5),

= @ cin? Ez_lw‘ 6Baii+1) _ p ) 2
n, = 1+47rsm9[45€ 32 % + 1 By ) &

+0 [(%)2] : (3.40)
o= 1-sin’ 02 5 ﬁ{“”@uo[(ﬁf]. (3.41)

In the strong-field limit (£ > 0.5), we obtain
a 2 1 2
= 1+ —sin?f|=¢6—(8lnd— - -
ng +47Tsm 0[35 <8n 3 37)

(1n7r + %877 —2—1In 5) - (—% - %g(:a)) €2

- j—2 . 1 . .
(- s+ € J]

=3
+0 [(%)2] , (3.42)
n = 1+%‘n29[§_71nf+§—m_§2
J 1J_2

(G —1)¢

+0 [(%)2] , (343)

where +y is Euler’s constant.
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For an external electric field, in the weak-field limit (y < 0.5) we obtain,

a |14
= 14 — |22
e i | 157
L1 i (=1)72% (6By(j41) — (2 + 1)Ba;) o;
34y J(2j+1) Y
a 2
+0 (%) ] (3.44)
X (—1)922(j+1) ) 2
a |, 5 (=1)72 B2(J+1) 2j a
= — — 4
n)| 1+47rs1n 0; 5T 1 y? +0 (27r) (3.45)

and in the strong-field limit (y > 0.5)

n, = 1+%sin20

2 1 2
. L 5 . -1 1 1 -2
z(lnw+187r 2 ln(zy)>y ( 5 6((3))3;

+ 2; (;)_j; ( j(jj__Zl)C(j ~ 1)+ G+ 1)) (iy)j]

J

o 2
+0 [(%) ] : (3.46)
_ o, 5,02 .In(iy+l-In7 1
n = 1 47rs1n 0 3+Z—y +y2
(=) tj-2 a2
+j:23 g G0 = D) 7| +0 (%) . (347)

From this equation, it is apparent that the index of refraction acquires an
imaginary part in strong electric fields.
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3.3 Birefringence

In general, the birefringence is quantified by the difference of the indexes
of refraction for the two modes of propagation,

o = g (e (ern (]

+0 [(%)2] (3.48)

where the upper sign is for the magnetized case and the lower for the
electrified case. Figure 3.1 depicts the indices of refraction for these two
cases.

3.4 Dichroism

The analytic properties of the function n(€) can be used to estimate the
dichroic properties of a magnetized or electrified vacuum. In a external
electric field we have { = iE/E), = iy, while in a magnetic field { = B/Bj,.
n)(€) is real for real arguments; however for imaginary &, n(§) acquires
an imaginary part. Classically, this imaginary part may be related to the
attenuation length of a plane wave traversing the vacuum

27
" Imn

l (3.49)
where A is the wavelength of the radiation. In quantum field theory, the
imaginary part of n is related to the imaginary part of the photon polariza-
tion operator and therefore the cross-section for one-photon pair produc-
tion.

In general the imaginary part for the two polarization modes is

_ O _t a)?
Inn. = o-sin GIle( y) +0 [(%) ] (3.50)
Imn = fsinzé? [ImXé2) (—i) y 2 - ReX(gl) (—;) y_l]
™
o 2
+0 [(5) ] . (3.51)

These are conveniently calculated by evaluating the imaginary part of X ()
for imaginary values of x by integrating around the poles of Equation 3.6
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Figure 3.1: The difference between the index of refraction of the parallel
and perpendicular polarizations for light traveling through external electric
or magnetic fields.
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(Heyl & Hernquist 1997b, Itzykson & Zuber 1980),

1 °° e~ nT 1
Tm Xo(z) = —~ Zl = e By () (352)
n=

where F' is a generalized hypergeometric function. Using Equation 3.13 to
calculate Im X (x), yielding for the indices of refraction,

Tmn, = %sin2ai(§w+% 71122>e—mr/y
+0 [_(%)2] (359
= gl (1) fn (o)
ro|(z)]> @
Imnj = - sin eZ( +——)e"””’+0[(%)2], (3.55)
LG R ()

a2
+0 [(—) ] (3.56)
27
Figure 3.2 depicts the imaginary part of the index of refraction as a function
of field strength.

In the weak-field limit, the imaginary part of the index of refraction is
exponentially small as Klein & Nigam (1964b) found. However, our result
is larger by a factor of 1/y in this limit and is more complicated. The error
occurs between their Eq. 5 and Eq. 6. First, they have neglected the real
part of the integral, and as in Klein & Nigam (1964a), they have calculated
,u;-j and used it as p;;. These errors are not important for this applica-
tion. However, their function ®»(x) has not been calculated correctly. By
examination of their Eq.6, we see that

2
+ Sy 1,1,1F5 2 (efﬂ/y)
T

oL a1l
oK~ 2161 2@ (3.57)
SO 1
™
®y(z) = ——Im X, (E) (3.58)

which from examination of Equation 3.54 is significantly more complicated
than their expression.



30 BIREFRINGENCE AND DICHROISM

E (V/cm)
1013 1014 1015 1016 1017 1018

WOO I \HHH‘ I \HHH‘ I \HHH‘ I \HHH‘ I \HHH‘ I \!\/H)\L}\/L\
Wofwo;
= L
€ i
‘ -
CQ 10-201—
€ i
‘ -
Wofso;

. L \\\HH‘ L \I\H\H‘ L \\\HH‘ L \\\HH‘ L \\\HH‘ L \\HHT

0.001 0.01 0.1 1 10 100 1072

Y (E/Ek)

Figure 3.2: The imaginary part of the index of refraction for perpendicu-
lar and parallel propagation modes for light traveling through an external
electric field.
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3.5 Conclusions

Using a closed form expression for the Heisenberg-Euler effective Lagrangian
for quantum electrodynamics in wrenchless (K = 0) fields, we have calcu-
lated general expressions for the index of refraction of a slowly-varying
electromagnetic field, and evaluated these expressions for the simple cases
of a pure electric or magnetic field. Our results agree with some previous
work (Adler 1971, Berestetskii, Lifshitz & Pitaevskii 1982, Mielnieczuk,
Lamm & Valluri 1988, Tsai & Erber 1975) in the appropriate limits. We
expect these results to be of general utility especially in the study of light
propagation in the vicinity of strongly magnetized neutron stars.
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Chapter 4

QED Oneloop
Corrections to a
Macroscopic Magnetic
Dipole

SUMMARY

We consider the field equations of a static magnetic field including one-loop
QFED corrections, and calculate the corrections to the field of a magnetic
dipole.

4.1 Introduction

The one-loop corrections of quantum electrodynamics introduce nonlineari-
ties in the equations of the electromagnetic field. These corrections manifest
themselves through an index of refraction, electric permittivity and mag-
netic permeability tensors which are a function of field strength (Tsai &
Erber 1975,Heyl & Hernquist 1997c). The vacuum responds to an applied
field like a nonlinear paramagnetic substance (Mielnieczuk, Lamm & Val-
luri 1988). Using an analytic expression for the effective Lagrangian of QED
to one-loop order Heyl & Hernquist 1997b, we derive the magnetic mag-
netic permeability tensor as a function of the applied magnetic field and
calculate the one-loop corrections to the field of a macroscopic magnetic
dipole.
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4.2 The Effects of Non-linearity on the Field
Equations

The effective Lagrangian of QED at one-loop order consists of the sum of
a linear and a non-linear term

L£=_Lo+ L. (4.1)

Both terms of the Lagrangian can be written in terms of the Lorentz in-

variants,
I=F,F" =2(BJ” - |E|) (4.2)

and

1 2
K=— <§€APMVFAPF“,,) = —(4E-B)2. (4.3)

following Heisenberg & Euler (1936). The Greek indices count over space
and time components (0, 1,2, 3).

Since we are interested in the static properties of a magnetic field, we
can take K = 0. If we apply the Euler-Lagrange condition to extremize the
action, we obtain,

VxH=0 (4.4)
oL
H=—4-"B (4.5)

where the factor of —4 is inserted for later convenience.

Since V x H = 0, we take H = —V¢, where ¢ is the magnetic scalar
potential. Furthermore, the field B is derived from a vector potential
(i.e. B=V x A) and so we also have,

V-B=0. (4.6)

If the relationship between H and B were linear, this equation would be sat-
isfied by V2¢ = 0. However, we will assume a small non-linearity between
the two fields,

oL ! ]
—47 = po + Hi(B%) (4.7)

where p is a constant and g} a function such that p}(B?) < pf.
We can invert the relationship between the two fields to first order

B = (o + () H (4.8)

Now we recast the field equation with the magnetic potential

V- [0 + mu(H2) V4] = 0, (49)
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write ¢ = ¢ + ¢1, and solve the equation order by order

Ve = 0 (4.10)
H2
V1 = peg=-V- [MV%]
Ho
(1) H2
= 28 gg . (vh-9)ven (4.11)
where
du(z
u (@) = %2 (4.12)
For a magnetic dipole,
m-r
$o(r) = o (4.13)

5(m - r)2 + 3|m|2|r|2] m-r

|I‘|13

Voo (Vo -V)Vgo = 3 [ (4.14)

or more conveniently in spherical coordinates where we have taken the
dipole moment m to be aligned along the z—axis,

4T m

) = /5 5Yi0(0,9) (4.15)
3
Véo- (Voo V)60 = 12/ 755 [Vo(6,6) + V2TV0(4,6)] (4.16)

4.3 The Lagrangian to One-Loop Order

Heisenberg & Euler (1936) and Weisskopf (1936) independently derived
the effective Lagrangian of the electromagnetic field using electron-hole
theory. Schwinger (1951) later rederived the same result using quantum
electrodynamics. In Heaviside-Lorentz units, the Lagrangian is given by

1
Lo = _ZI (4.17)
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cos(B% —%+2V;K>+COS(B%c —%—ngK>
(4.18)
cos(B% —%—HVEK)—COS<B%c —%—zV;K)
CQ
+ |Bg|? + S (4.19)

ZCS

where By = Ej, = . ~ 2.2 x 10 Vem ™! & 4.4 x 10'3 G. Dittrich &
Reuter (1985) have derived the second-order corrections to the Lagrangian
and found them to be in general an order of a smaller than the one-loop cor-
rections regardless of field strength; consequently, the one-loop correction
should be adequate for all but the most precise analyses.

In the weak field limit Heisenberg & Euler (1936) give

1 e? 1 7 1 13
L~-—-T+FE;— IP—-K|4+_——|-IPP+=KI|---
TR [18013,3 ( i )+630E§;‘ ( *3
4.20)
We define a dimensionless parameter £ to characterize the field strength

1 /I

and use the analytic expression of this Lagrangian for K = 0 derived by
Heyl & Hernquist (1997b):

e? I 1
where
z/2—1 1 1 5
Xo(z) = 4/ In(T(v + 1))dv + gln (—) +2In4r —4In A — 3 In2
0 x
1 3 1. (2\] ,
- [1n47r+1+1n (5)]$+ [Z+§ln (E>]m (4.23)
where 1
Ind = - ¢W(=1). (4.24)

Here ((V)(z) denotes the first derivative of the Riemann Zeta function.
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With the analytic form of the Lagrangian, calculating uf and u) is
straightforward and « provides a convenient ordering parameter.

dLo
! = —4— =
Wy = —d5r=1 (4.25)
' o 1 1 /1
= —— 12X =) —=X - 4.2
o= g o (g) - (¢ (4.26)
where £ = B/By, and
dXo(z)
X (z) = =202 4.2
D)= =2 (427)
Inverting this relationship to first order yields,
po = 1 (4.28)
2y = i Be\ _ Bry (B
) (g _il Bi x (Be) _ Bi x0) (B
() = 21 2B2 [H4X° 7)) m \ ' (4.30)

o 1 [,B B H
= & Zk | In(4r) +1 41
27 6B2 { H2+3H3[n( ™1+ n(Bk)

~aar (3 50)] vagh o (35) - 1] s

where 9 (z) is the digamma function,

) = dlndl;(x)_

The expression for u; agrees numerically with the results of Mielnieczuk,

Lamm & Valluri (1988). The function p{" (H?) may conveniently be ex-
panded in the weak-field limit (H < By/2),

2% B 2
(1) H2 2(]+2) 4
( 27TB2Z 2+ 3 (Bk) (4.33)

where B; denotes the jth Bernoulli number, and in the strong-field limit
(H > By/2)

(4.32)

2 3 4

W2y - @« 1 )18, 1By f (H 1-1 _ 1B

i () wBI\3H: 28 |"\B, )T "] 2@
= (—1)1' H\ ™
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Figure 4.1: ,ugl)(H2) as a function of £, H

where we have used the expansions of Heyl & Hernquist (1997b).

As apparent from Figure 4.1, ,ugl)(H 2) is constant up to approximately
H = 0.5B;, and then begins to decrease quickly as H—2. The existence of
these two regimes allows us to find analytic solutions for the correction to
the potential (¢1).

4.4 Solving for the first-order correction

4.4.1 Weak-field limit

,ugl)(H 2) is constant as long as H < By. In this regime Equation 4.11 may
be solved analytically. Since spherical harmonics are eigenfunctions of the
angular component of the Laplacian operator, it is expedient to expand the
right-hand side of Equation 4.11 in terms of spherical harmonics (Binney
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& Tremaine 1987).

T 2
prun(r) = /0 s | A9V, 6. O)pon(r,6.) (4.35)

With this definition the correction to the potential is given by (Binney &
Tremaine 1987)

o Yzm(gad)) 1 " l l OO da
¢1(T,9,¢)——ZZT+1 m/o le(a)a+2da+r/r le(a)F

(4.36)
If ugl) (H?) is a constant, we see from Equation 4.11 and Equation 4.16 that
the expansion given by Equation 4.35 is straightforward

(1) 3

pro(r) = —24\/37#%“70 (4.37)
1,3
Ty m

pso(r) = —24 ?ﬁTTO (4.38)

If we combine these results with Equation 4.36 we see that the interior
integral diverges if ,ugl) is a constant. This does not present a problem if

we insert an inner bound (rg) to the interior integral. This inner bound is
defined as the radius at which either ugl) (H?) begins to change (i.e. when
H > 0.5By) or when the zeroth order potential is no longer given by the
dipole formula (i.e. at the surface of the object). We obtain

4 Wmd 3 1

4 /ot (—6 - ﬁ) Yio6,6)  (4:39)

To

é1,10(7,6, )

9 o T2
b 0,8) = 6T (1L LYy 6 o)
1,30l7, 0, = 7 ho 1 77_3 112 300, 9). .

These functions describe radially dependent corrections to the dipole and
hexapole moments of the object under consideration. If we define the higher
moments in analogy to Equation 4.15,

4 MlO

¢10 (T, 0, ¢) = 2l—+1 T-UTI)Y;O (07 ¢)a (441)
we obtain the following corrections
24" /3 1
= -— — - = 4.42
my (T) 3 m T (4.42)
Moy (r) = gl s (1111 (4.43)
N T Trg  11r4)° '
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To eliminate the dependence on the inner bound, 7y, we assume that the
dipole and hexapole moments are known at a radius r; > r¢ and calculate
the difference between the known moments at r, and those measured at
infinity.

Substituting the values of pg and ugl), we obtain,

8 «a m 1\’
m(r=00) —m(r=rs) = Am=1—35%m (EB_k) (4.44)
M(—)M(—)—AM—4a2MI2(445)
307" = O&© 30" =Ts = 30—16527rmrs T'gBk .

Both the corrections are given in terms of the magnetic field strength at
rs. Since we have assumed that ugl) (H?) is constant near rg, the field
strength at r; must appreciably be less than By for this set of approxi-
mations to be valid. Consequently, the correction to the dipole moment
is indeed quite small, less than one-thousandth of the “bare” dipole mo-
ment. However, there is a correction to the hexapole moment even without
a “bare” hexapole moment. Thus radiative corrections generate a hexapole
field which is in principle measurable at infinity.

4.4.2 The General Case

In the strong-field limit, we must use the general equation (Equation 4.31)
for ugl)(H 2) because the magnetic field strength varies as a function of
0 around the dipole. Before tackling this problem numerically, we can
glean several characteristics of the solutions from Equation 4.11 and Equa-
tion 4.35. Since for a dipole peg is a odd function of # and constant with
respect to ¢, the contributions,

pim(r) = 0if [ is even or m # 0. (4.46)
Furthermore, we can more conveniently write

1 al1lmd
pim(r) = %ﬂB_ﬁrTOle(ﬂ) (4.47)

where X;.,,(8) is a dimensionless function of a dimensionless argument,

m 1
8= T?Fk (4.48)
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Figure 4.2: x1,»,(8) as a function of 8, H. The solid lines indicate where
Xim () is positive. The dashed lines indicate negative values of the ordinate.

For a dipole,

27

xin(® = =2 [ sinoan [ agv;,0.0) %
0 0

1
(ﬁ %) (3 cosf (5cos® 0 + 3)) ,ugl) [8°B; (3 cos® 6 4139)
2w By,

We calculate numerically the functions x;.,(8) for the first three odd
harmonics and depict the results in Figure 4.2.
The limiting expressions for the weak-field limit are easily calculated,

32 13312 167936
xi0(#) = x/:%[—ﬁ+ 595 2~ s ﬂ4+0(66)] (4.50)

vold) = \/ﬁ[ 32 11776 55 323584ﬁ4+0(ﬁ6)] 451)

105 ' 3675 5775
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xs0(8) = Vil [+ 1561127ﬁ2— 1110550190756ﬂ4+0(ﬂ6) (4.52)

In the strong-field limit, we have the following approximations

xw(B) = —iﬁ(27\/§—47r) B2+0(B7?) (4.53)
xs0(B) = e Tr (81— 14v37) 572+ 0 (579) (4.54)

243
Ys0(8) p (1863 - 340\/?_m> B2+0 (5% (4.55)

1215

The integrals for each spherical-harmonic component of the first-order cor-
rection (Equation 4.36) may be recast in terms of integrals over 3

1m 1 a Ylm0¢
3r2u027r C2A+1

/J’
g8 [ ()0
B

B8
+ﬁ—(l+8)/3/ le(v)v(l+5)/3dU] (4.56)
0

where the first integral is to be evaluated in the limit as 5y — 0o. Although
Equation 4.56 appears to be scale free, the cutoff 8y has a physical inter-
pretation. Firstly, it can be taken to be the magnetic field strength at the
surface of the object. For a point magnetic dipole (e.g. an electron), the in-
terpretation is more subtle. As one approaches a point dipole, not only does
the field become arbitrarily strong, so do the field gradients. When these
gradients become larger in magnitude than By /A, (Ae = ii/mec, the elec-
tron Compton wavelength), the Heisenberg-Euler Lagrangian is no longer
applicable; therefore, we do not expect our expressions for peg to be valid
arbitrarily close to a point dipole. The radius or field strength at which
our expression for peg fails depends on the intrinsic dipole moment of the
object (m),

m 1/4 m\ /4
~ —_ ~ —_ _3/4
ro (Bk )\e) or [ (Bk> A, (4.57)

As in the weak-field case, we calculate the shift in the observed multipole
moments at infinity relative to the known moments at some inner radius
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rs > 19 or equivalently at some field strength 85 < Bo.

1 1a [3 Pe
m1(0) —my(Bs) = —§m%% El/ x10(v)vdu
0
1 Bs )
- ,8_/0 X1o0(v)v“dv (4.58)
Mio1(0) = Moo (8) = —oemr?—2 52/3/ xao (0)0!3dv
30,1 30,1(0s T o2\ In | 30
- 555/3/ X30(U)U8/3dU] (4.59)
0
M3s0,1(0) — Mso,1(8s) = - mry— Lo 64/3/ Sx50(v)v_1/3dv
’ ! 33" o 20 \ 4t A
Bs
— 55_7/3/ X50(’U)’U10/3d’u (4.60)
0

and in general

1 mrlll o 2l+1x
320+1) % po2m 4

lﬂgl‘””/ Xio(0)o I3 dy

Mi,1(0) — Mio,1(8s)

0

Bs
— gy / Xlo(u)v(l+5)/3dv]4.61)
0

Figure 4.3 depicts the shifts in the moments between the surface of the
dipole and infinity.

For the higher moments (I > 1), the integrals in Equation 4.56 are well
behaved so we need not set a inner bound () and we can define in general

1 m\YV: 1 o [2+1
= - — —(1—-4)/3
Mio.1(0) 3(2l+1)m(Bk) o 27 V4 / Xio(v dv

(4.62)
This integral converges for all [ > 1. For | = 1, it diverges logarithmically
as v — 00.
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Figure 4.3: The difference in the strength of the multipole moments mea-
sured at infinity (8 — 0) and at the surface, M;o(0) — Myo(Bs) (AMj),
as a function the strength of the dipole field at the surface, 35, H;. The
solid lines indicate the moments for which the vacuum acts paramagneti-
cally, i.e. AM;o(Bs) > 0. The dashed lines indicate negative values of the
ordinate.
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4.5 Conclusions: Application to Neutron Stars

The environment of a neutron star is strongly magnetized; therefore, the
one-loop QED corrections may be significant, especially for those neu-
tron stars with ultrastrong surface fields (magnetars) (Duncan & Thomp-
son 1992). Although plasma probably fills this region, QED vacuum correc-
tions dominate the contribution of the plasma to the magnetic permeability
(Mészéaros 1992).

The structure of the magnetic field at the surface of a neutron star is an
important clue to the origin of neutron-star magnetic fields. Several authors
have proposed (Blandford, Applegate & Hernquist 1983) that currents in
the thin crust generate the observed magnetic fields. In this case, the field
structure will be dominated by high-order multipoles with [ ~ dr./r, > 1
where 6r. is the thickness of the crust and r, is the radius of the star
(Arons 1993). Arons (1993) argues further that the observed spin-up line
for millisecond pulsars constrains the strength of higher-order multipoles
at the surface to be no more than 40 % of surface strength of the dipole.

The current results complicate this argument. The location of the ob-
served spin-up line and the value of spin-down index of a pulsar depend
on the strength of the various moments of the magnetic field at the light
cylinder. Our results show that the vacuum itself may generate higher
magnetic moments between the neutron star surface and the light cylinder.
Figure 4.4 depicts the fractional contribution of higher magnetic moments
to the field strength at the light cylinder as a function of the surface dipole
field strength and the pulsar period.

Even for magnetars near their birth, the vacuum adds only a small cor-
rection to the field strength at the light cone. Because of the weakness of
the QED coupling, the one-loop corrections to otherwise classical descrip-
tions of a magnetic dipole tend to be small for all but the most extreme
field strengths.

Observing this effect would be difficult. For a magnetar, measurements
of the field strength at two different radii and an estimate of the strength of
higher order moments at the surface each to a precision of one part in one-
thousand would be required. However, if one could argue that an object
had no hexapole or higher-order multipole intrinsically, a measurement of
a higher-order multipole far from the object would uncover the effects of
one-loop corrections. For example, an electron is intrinsically a magnetic
dipole. If one ignores the contribution of terms in the Lagrangian depending
on field gradients, one would expect the vacuum surrounding an electron
to generate higher order multipole fields. Determining whether this occurs
is beyond the scope of this work.
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Figure 4.4: The fractional contribution of higher magnetic moments to
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Chapter 5

Testing QED with LIGO

SUMMARY

We propose an experiment using the gravitational wave detector LIGO to
measure the photon-photon interaction in quantum electrodynamics. We
find that the LIGO testbed interferometer could detect this effect after one
week to nine-month integration with a signal to noise ratio ~ 15 depending
on the strength and size of the magnet used.

5.1 Introduction

Quantum electrodynamics (QED) is one of the most successful physical
theories. Its predictions from the lowest energies (Maxwell’s equations)
to high energies (the anomalous magnetic moment) have been tested with
unrivaled precision. However, one of the earliest predictions of QED, the
photon-photon interaction (Euler & Kockel 1934), has only been observed
through Delbriick scattering (Mietner & Kosters 1933; Wilson 1953) of
high-energy photons off of heavy nuclei (see Milstein & Schumacher 1994
for a recent review).

Here, we propose a straightforward experiment to detect the photon-
photon interaction more directly by examining the coupling between pho-
tons and an external magnetic field (Figure 5.1). For laboratory field
strengths the interaction is miniscule and results in an index of refraction
n > 1 for photons traveling in a vacuum.
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Figure 5.1: The coupling between a photon and an external magnetic field.

5.2 The Experiment

The LIGO interferometer has been designed to detect gravitational radi-
ation by measuring the change in path length between several mirrors in-
duced by a passing gravity wave, by interfering the emission of several lasers
traveling down two perpendicular paths. The initial design is sensitive to
changes in the path length of ~ 107! m over the 4-km length of the in-
strument at a frequency of 200 Hz (Abramovici et al. 1992). At higher
frequencies, the photon shot noise increases as the frequency, and at lower
frequencies thermal vibrations and seismic activity add uncertainty to the
path length.

A magnetic field applied along a section of the light path will induce a
change in the light travel time which could be detected as a path length
change. To maximize the interaction between the laser photons and the
magnetic field, the magnetic field should be directed perpendicular to the
direction of propagation and to the magnetic field of the laser radiation. For
this geometry, the index of refraction to lowest order in the field strength
is given by

al4 [ B\? _»n( B ’
n-l=o (B_k) =9.272 x 10 (10—T> (5.1)

where o ~ 1/137 is the fine-structure constant and By = 4.414 x 10° T.
Over a length of four kilometers (the size of the LIGO interferometer), this
index of refraction results in an increase in the effective path length ten
times larger than the root-mean-square noise in the measured path length
of the LIGO Mark I testbed interferometer of 3x 10~'° m /Hz~'/2 near 450
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Hz (Abramovici et al. 1996). Unfortunately, it is not practical to magnetize
the entire four-kilometer length of one of the legs of LIGO. The change in
path length is proportional to the length of path magnetized (I) times the
change in the index of refraction,

al4 (B
ALamp = (n — 1)l = Eg (_B_k) l
. B\*( 1
_ —22
= 9.272x 10 m<—10T> (—1 m). (5.2)

The signal-to-noise ratio to measure a change in path length with a
characteristic frequency f. is

S ~ ALC _ ALa.mp Ne

N = ALms  AL(f)VTe

where n is the number of cycles observed and E( f) is the square root of
the power spectral density of Gaussian noise at frequency f (Abramovici
et al. 1992). The number of cycles observed n. is f.t where t is the duration
of the observation. We obtain

S ALumpVi _ o 14 (E) W (5.4)
NTUAL(f) 4w \Bi) AL(f) '

(5.3)

We are free to select f. to minimize AL. The minimum of h for the Mark
II testbed 40-m interferometer is &~ 3 x 10712 m Hz~1/2 at 450 Hz. We find

s B \2/( I AL(f.) T\
—~15( = — ‘ . (5.5)
N 10T 1m 3 x 10-19m Hz /2 270 d

This quantity does not depend on the length of the legs of the interferometer
but only on the properties of the detector, the laser and the thermal and
seismic isolation of the interferometer; consequently, the experiment could
be carried out on the 40-meter LIGO test-bed interferometer and with a
similar laser and optics achieve the same signal-to-ratio as on the LIGO
interferometer itself.

Since LIGO is designed to have several independent beams and detec-
tors, this experiment will not interfere with the normal operations of the
instrument, as long as the magnets required to generate the variable 10 T
field over 1 m do not interfere with the transmission of the other beams or
the vacuum chamber enclosing them.

Unfortunately, the required field geometry cannot be achieved by sur-
rounding the the beam by a compact solenoid which would generate a field
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parallel to the direction of the laser. QED predicts that the interaction be-
tween an external field and a propagating photon is proportional to sin®
where 6 is the angle between the direction of propagation and the field.
However, the field geometry is essentially the same as that of a dipole used
in a synchrotron. For illustration we estimate the effect using a dipole with
the specifications for the Superconducting Super Collider. Each dipole was
intended to have a field strength of 6.6 T over a length of 15 m. Each
dipole magnet would bend the 20 TeV proton beam 1.5 mrad with a radius
of curvature ~ 10 km (Tooker 1994).

It is straightforward to substitute these quantities to obtain a signal-to-
noise estimate using a synchrotron magnet

% =1 (6-§T>2 (15lm> (3 X 101551{6;&1/2) i (%)1/2_ (56)

We see that by using the weaker though much larger magnet the same result
could be achieved after a single day’s integration.

5.3 Discussion

We have proposed a straightforward experiment using the extant LIGO
testbed interferometer and a large synchrotron magnet to measure the
nonlinear interaction between a photons and an external field predicted
by QED. In contrast to Delbriick scattering, the experiment is performed
for photon energies much less than the electron rest mass, and the signal is
not modified by other interactions (scattering off of the nuclei themselves
or the electrons surrounding them). The proposed experiment would probe
the predictions of QED in an unprecedented way.



Chapter 6

Electromagnetic Shocks in
Strong Magnetic Fields

SUMMARY

We examine the propagation of electromagnetic radiation through a strong
magnetic field using the method of characteristics. Qwing to nonlinear ef-
fects associated with vacuum polarization, such waves can develop disconti-
nuities analogous to hydrodynamical shocks. We derive shock jump condi-
tions and discuss the physical nature of these non-linear waves

6.1 Introduction

The nonlinear properties of electromagnetic waves traveling through a mag-
netized vacuum is of particular interest in the study of neutron stars.
Heisenberg & Euler (1936) and Weisskopf (1936) first derived nonlinear
corrections to the Maxwell equations of the electromagnetic field. Lutzky
& Toll (1959) and Zheleznyakov & Fabrikant (1982) applied the weak-field
expansion to show that shock waves can develop in the electromagnetic
field. Bialynicka-Birula (1981) used the full expression for the nonlinear
correction to the Lagrangian to study the generation of harmonics and
other nonlinear phenomena in the propagation of EM radiation.

In this paper, we use the method of characteristics to study the evolution
of waves governed by an arbitrary Lagrangian and then apply these tech-
niques to the Heisenberg-Euler-Weisskopf-Schwinger Lagrangian (Heisen-
berg & Euler 1936, Weisskopf 1936, Schwinger 1951). We derive the shock
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Figure 6.1: Illustration of the field geometry

jump conditions and draw a connection between shock formation and the
process of photon coalescence.

6.2 Deriving the Characteristics

We will use the method of characteristics to study the evolution of a distur-
bance of the electromagnetic field. In general, the relativistic Lagrangian
(L) of the electromagnetic field is a function of the two invariants of the
field. We follow the notation of Lutzky & Toll (1959) and Heisenberg &
Euler (1936) and define

I=F,F*" =2(B|* - |E|?) (6.1)

and

1 2

As illustrated in Figure 6.1, we choose coordinates so that the radiation is
polarized in the z-direction and travels along the y-axis toward positive y.
The ambient magnetic field makes an angle ¢ with the electric field, and
the projection of the magnetic field into z — y plane makes an angle 8 with
respect to the z-axis (magnetic field of the wave).



6.2. DERIVING THE CHARACTERISTICS 53

With these definitions, the invariants are
I = 2[(Bcosfsing+ B)* + (Bsinfsin¢)® + (Bcos¢)” — E*](6.3)
K = —(4EBcos¢)? (6.4)

where B is the strength of the ambient magnetic field, E and B are the
strengths of the electric and magnetic fields associated with the radiation.

6.2.1 ¢,n formalism

We introduce the new coordinates

e=y—+t

A (6.5)

where we set ¢ = 1. We characterize the traveling wave by a vector potential
with one non-zero component,

A, = ¢(yat) = 1/’(6, 77) (66)

We have assumed that the vector potential has only one independent com-
ponent which allows us to treat the problem using characteristics. Unfor-
tunately, we cannot follow the interaction between two polarizations which
was treated by Bialynicka-Birula (1981).

Using the definition of the vector potential we get

E=¢ _¢e
B =y + v (6.1

where we have used subscripts to denote partial differentiation. Substitut-
ing this into the definitions of I and K, we get

I = 24y + B? +2(¢,; + 1) B cosfsin ¢) (6.8)
K = —16(t,; —v:)*B?cos® ¢. (6.9)

In the (n,€) coordinates Hamilton’s principle assumes the simple form
(Lutzky & Toll 1959)

0 (oL 0 (oL
= +=—|wx— ] =0. (6.10)
O€ \ 0 on \ 0y,
Since the Lagrangian is a function of I and K alone, we can rewrite this in
terms of derivatives of £ with respect to I and K, I and K with respect
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to 1. and 1), and finally ve., Ve, and 9, by successive applications of the
chain rule:

2
0°L ( oI oI 0I 61) 6.11)

0 a_£< 1 I )+_ o1 91 o101

I \9edd. = andi,) " OI* \9, 0y 9. De

oL (82K K > oL (8_K6_K+6K6_K>
O, O O Oe

oK \deoy.  onagn ) T 9KZ
Pc (oK oI oro oK o1 , ol oK)
IOK \ e 0. T e dv. T oy 80y T oy 00
0 = atee + ey + iy (6.12)

a%(az)“’ 2L (6K>2+6L‘62I+6£62K
a1z \ 9y, K2 \ 9y, 91 0Y? ' OK o2
9L OI 0K
DIBK d O,
[625 oI 81 9L OK OK 0L O°I oL 0’°K

OK? 0%, 0%, | 0T 00,09,  OK 01,0,

(6.13)

DI By, B,
&L (31 6_K+£6K)] 614)
BIBK \ 8y, b, = Oy, D,
C o P T (G c i oo
a2 \ dy, K2 \ 0y, oI 92 DK 2
2L oI 0K
BTOK 50, 50, (6.15)

Substituting the definitions of I and K in the field geometry yields

2
a = [B?cos®fsin® ¢ + 41, (B cosBsin g + ¢,)] (8975
_ 0*L _ oL
— 2,032 H = 2 249~
4K B* cos ¢6K2 2B~ cos ¢6K
_ _ . 0L
+ 1682 cos® ¢ (B cos 0 sin ¢ + 24py,) (1 — ) SI0K (6.16)
oL I 5, .9 . m2] O°L
b = 54—2 5—(1—(:05 05111 ¢)B W
_ oL _ oL 0’L
2 .2 2 2
+ 8K B* cos ¢6K2 + 4B” cos ¢8K+2K816K (6.17)



6.2. DERIVING THE CHARACTERISTICS 55

2
¢ = [B%cos®@sin® ¢ + d1p. (B cosfsin ¢ + 1)) ] ng
_ 0*L _ oL
_ 2 2409 ~ 2 2 U~
4K B* cos ¢6K2 2B* cos ¢6K
82
OI0K
For ¢ = m/2, the equation for the field v simplifies considerably,

= PL (o B cos f 132 2 1
0 = e 4W Y, + ¥y B cos +Z cos (6.19)

2
+ Yen [85 +2a (21 B?sin® 0)]

orI2
oL
oI2
For Lciassical = —I/4, the second derivative of the Lagrangian with respect

to I and the all derivatives with respect to K are zero. We obtain 9, =0
and recover the result

Ye,m) = fle) +9(n) = fly+1) +9(y —1). (6.20)

The terms in this equation correspond physically to ordinary wave propa-
gation in the negative and positive y directions.
Using the quadratic formula, we can factor the differential equation

0 0 0 0 0 0
(& - p+6_n> (& - p_6‘_17> Y ==ty (a - p+6_77> p- (6.21)

+ 165 cos® ¢ (B cos O sin ¢ + 20.) (e — 1) === (6.18)

_ 1_-
+ Yy [4 <¢f + .Bcosf + ZBZ cos® 0>]

and
0 0 0 0 0 0
(ae p- an> (ae P+ o )1”_ ~n (ae p- a) (6:22)
where 5
—b++vVb2 -4

Looking at Equation 6.21 and Equation 6.22 we define two new coordinates
(u,v) such that
e=u+wvandn=—(pru+p_v) (6.24)

We now define two functions, the Riemann invariants,

Vi = e pathy /wnaﬁ

bemptby= [ g

dv' (6.25)

v=uv'

du' (6.26)

u=u'

Y
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which are constant along curves with

% = —P¢(¢+a¢—; B)- (6.27)

To first order in ¢, and 9., the field variables of the traveling wave are
given in terms of these functions:

(p— =Dy + (p+ — Do

E = t¢p—t=-— (6.28)
p—— P+

_+1 - + 1)y

B = 4+t = (p ¥4 — (p + 1) (6.29)
pP—— P+
and the characteristic curves are defined in the y — ¢-plane
dy 1-px

-2 = =04 6.30
i T, 0t (6.30)

Given the specified field configuration, the 14 characteristics travel toward
increasing y and the t¢_ ones travel in the opposite direction. We can
therefore in this case identify the 1, characteristics with the light travel
path
o= (6.31)

where n is the index of refraction of the magnetized vacuum as discussed
in Erber (1966).

In the limit when the electric and magnetic fields due to the radiation
may be neglected, we get

pr = —cxv2x2-1 (6.32)

a:+1i\/:172—1_ Va2 -1

= = 6.33
7* r—1++/22-1 S (6.33)
where
_ (0 ap 2 BPL i o OL
T = <8I+QB cos” # sin ¢6I2 + 4B* cos ¢6K
_ , 0L oL
2 202 -~ 2
2B (cos 0 sin ¢6I2 2 cos ¢6K) (6.34)

For the weak-field Lagrangian given by Berestetskii, Lifshitz & Pitaevskii (1982),

1 e*h 7
= I+ " (P- K. 6.35
L= ~16x1 T 180 % sm2micr ( 1 ) (6:35)
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This formalism yields an index of refraction,

4
_ -1 —2y _ e'h =y 20 in2 2
n=1-2""+4+0( ") = 1+WB (4 cos® Osin® ¢ + 7 cos” ¢) (6.36)
where we have also used
oL _,0°L _,0L
— > B*~——- B?——_. )
o1 > " " K (6.37)

This result agrees with Erber (1966) and Berestetskii, Lifshitz & Pitaevskii (1982).

6.2.2 y,t formalism

The advantage of the e, formalism is that the field information travels
nearly parallel to the coordinate axes; unfortunately, these null axes can
obscure the physical processes. The same derivation can proceed similarly
for the standard coordinates y,t. In these coordinates the Hamilton’s prin-
ciple assumes the form

o (55) -5 (55) =o (6.39)
where following the previous definitions
Yy =B and ¢, = —E. (6.39)
Taking the partial derivatives again yields an equation of the form,
atyy + byt + cpyy = 0 (6.40)

where

2L (8[)2 2L (6K>2 5 2L OK oI

“ = Brr\oB) Tok2\oB 910K OB 0B
oL 821 oL K
o1 082 * 9K 087 (6.41)
- . 20%L 8L
= 4 [4 (Bcosfsing + B) T W] (6.42)
p = _ofOLOI I &L OKOK
912 OE 0B ' 0K’ OE OB
O°L (0K Ol OKOI\ oL &I
9I0K \OE 0B ' OBOE) ' oI OEOB
oL 02K
0K 6EaB] (6:43)
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2 2
= 32E (Bcosfsing + B) (ng +86§6£K

. - 625(61>2 0L <6K)2+ L OK OI

B2 cos? ¢) (6.44)

aI2 \ OE K2 \ OE dIOK OE OE
oL BL 0L 9K
0I OE? QK OE?

2
= 4[4}32% _ ok + 8B2% cos® ¢ x

(6.45)

o2 oI

(6.46)

2/2 .2 oL
(32E B cos™ o552 910K 0K

2 2
PL | o 0L 6£>]

This equation may be factored yielding

0 0 0 0 0 0
(-ma) @-m5)r=w(g-ma)- o

0 0 0 0 0 0
(a—y - T_a> (a—y — T4+ a) ¢ = _¢t (a_y - T—a) T+ (648)

where

and

1 —b b2 —4
rpm Lo VEVE - dac (6.49)
g4+ 2a

where o4 are defined as in the previous subsection and 7 plays a role
analogous to p.

As in the (e,n) technique, we define two new coordinates (u,v) such
that

y=u+vand t=—(r4u+7_0) (6.50)

We now define the Riemann invariants,

v or
e = byomve- [ GE (6.51)
vo U |y=o’
v 9T
o = b= G| (6.52)
which are constant along curves with
dt _
& = (0 B). (6.53)

dy
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To obtain a cursory understanding of the characteristics of this equation,
we expand each of the coefficients about E, B = 0 to first order yielding,

a = ag+apyy —agy; + O(B) (6.54)
b = bo+bpyy, —bpyy + O(B?) (6.55)
c = co+cpihy —cpty + O(B?). (6.56)

The coefficients are

= . \20°L oL
a = 4 [4 (B cos 0sin ¢) T E] (6.57)
= . %L = . 220%C
ap = 16Bcosfsin¢ [3W + 4 (Bcosfsin @) W] (6.58)
B _ . o’L L —,
bg = 323c0s651n¢<ﬁ+8616KB cos ¢) (6.59)
_ oL -5 oL
Co = —4 (88_KB COS ¢ + W) (660)
b
cg = _7E (6.61)
and
agp = bo = bB =Cg = 0. (6.62)

Using this linearization we estimate the magnitude of the inhomogeneous
term in Equation 6.47 and Equation 6.48 if we assume E; ~ E and B; ~ B

so we can neglect it to first order.
We estimate the Riemann invariants,

b = Yy — 1t + O(B?) (6.64)
= B+1,.E+0(B? (6.65)
Yo = Wy~ T+ O(B%) (6.66)
= B+71_E+0O(B?% (6.67)

Now taking the limit where E and B themselves may be neglected we
have

or = £/ —ao/co
_ A . \20°L 0L L, .ac ac\1Y?
= + [(4(30050s1n¢) W—}_W)/(SB cos ¢8—K+E>]
7 _
- Yl (6.68)

z—1
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Figure 6.2: Characteristics and Shock Formation

where z is defined in Equation 6.34. We can see from this result that
7. = —7_ + O(B), therefore we have for the two Riemann invariants

¢i =B+1,.E+ O(B?) (6.69)

Figure 6.2 depicts how two adjacent characteristic may intersect. Addition-
ally, we see that 1 _ characteristics (i.e. lines along which ¢_ is constant)
that originate from regions without wave fields cross the ¢, characteristics.
Therefore, we can argue that ¢»_ = B — 7, E + O(B?) = 0 throughout the
region to the right of the antenna because the fields are zero in this region.
We can use the same argument for the region to the left of the antenna
and find that in general B = 7. E + O(B?) along the 1, characteristics.
Furthermore, to first order, both ¢4 are constant along the characteristics;
therefore, the slopes of the characteristics which depend only on 4, ¢_
and the constant background field must be constants and the characteris-
tics travel at a constant speed.

Using the figure as a guide, we estimate the distance over which two
adjacent characteristics can travel before intersecting is given by

-1

-2

Ay =c (6&> - d0T£C (6.70)
ot (aBTi + CB) By — 2cpT+ Ey

Where we have use that fact that ¢, characteristics travel with velocity
—1_ =714 + O(B).

To work with this equation further, we define an opacity due to shock
formation and use B = 7+ E. We obtain

apcy + cpag

—1
Ro= Ay = 2aTic

(6.71)
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4.2B% +2CBa0 [ a0 By (6.72)
2a4 c C

8L _, ac) 8/ la?a oL

= +48B 4—— — hiliadhdad
8 B( a2 P5 T 51 o2 a1

L &L  PLILN _,  [9LL | (8L .,
* (25—0131( +6W6_K> B+ (Wﬁ* (aT) ) B

BLOL L 2L\ =y =»
(31 ok * a1 ororc) B3

oc -, oL\ '* B,
= B2 4+ 2= = .
X (861{ E+8I) - (6.73)
where we have defined
Bp = Bcosfsin ¢ and Bg = Bcos ¢. (6.74)

Where two of these characteristic curves intersect, a shock will form. To
move further, we must choose the proper Lagrangian.

6.3 The Non-Linear Lagrangian

Heisenberg & Euler (1936) and Weisskopf (1936) independently derived
the effective Lagrangian of the electromagnetic field using electron-hole
theory. Schwinger (1951) later rederived the same result using quantum
electrodynamics. In rationalized electromagnetic units, the Lagrangian is
given by

L = —I+Ly (6.75)

e? [ d¢ -K
- —¢2 )2
L1 hc/o e < {z( i~
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where Ey = m;ca. In the weak field limit Heisenberg and Euler give
1 e? 1 7 1 13
L~—-T+FE_— I’—-K — -+ =KI|---
PR [180E;§ ( 1 >+630E§;‘ ( T3

(6.78)
We define a dimensionless parameter & to characterize the field strength (I)

1 /I

and use the analytic expansion of this Lagrangian for small K derived by
Heyl & Hernquist (1997b):

0Ly K2 0L,
=L (I K1 — .
L1 =L1(1,0) + K K:O+ 5 K2 K:0+ (6.80)
The first two terms of this expansion are given by
eI 1
I = —= - .
£4(1,0) RS <€> (6.81)
861 62 1 1
— = —X; (= .
K | x_p he 1617 (g) (6.82)
where
Z/2—1 1 1 5
Xo(z) = 4/ In(T'(v + 1))dv + gln (—) +2In4r —4In A — gln2
0 x
1 3 1, /2\]
- [1n47r+1+1n (E)].’E-i- [Z+§ln (E>]m (6.83)
_ (1) 2@ 21
Xi(z) = —-2Xo(z)+2Xy' (z)+ gXo (z) — e (6.84)
and
(n) d" Xo(z)
X = — .
@) =L (6.:3)
1
4 = - ¢W(=1) ~ 0.2488. (6.86)

where ¢(V)(z) is the first derivative of the Riemann Zeta function.
Using these definitions we can derive the various partial derivatives im-
portant for shock formation

oc 1 ef1. 1\ 1_u (1),
o = ‘1*%[5)(0 ()-1% (3)¢ ] (687
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oL 1 e, 1 @ (1 _9
0K = Bsh* [‘2‘(1”0(5)‘”0 (5))¢

+ox M (%) §3] (6.88)
2o s (e (e ] o
82C - 1 62 —4 1 (2) 1 4
9IOK ~ 33dhc* (12X° (Z>_4X° (Z))E

(o () 2 ()¢

—3x? (%) .5—6] (6.90)
>*L  1e @ (1Y) . (2)(1) _
= aﬁEk4l3X° (6 -ox? () ¢

- X (%) 5‘7] (6.91)

6.4 The Opacity to Shocking

Using the results of the previous section we can expand the opacity (k) to
order e?/hc, which results in a substantial simplification

. _ _4,B:Bs (62£ PL_, . OPL

z~ hiliad T~ 2
oz T o 7B +28[8KBE>

()] 62

+0
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(6.93)

where we have focused on the propagation of the 1, characteristics. The
results for the ¢_ characteristics are identical in magnitude and follow from
symmetry.

From the form of Equation 6.73, we see that the opacity is zero for waves
traveling with their magnetic field vectors perpendicular to the external
field (L mode). This result agrees with Bialynicka-Birula’s analysis (1981)
who found that although a wave in the | mode readily generates waves in
the || mode, a wave in the 1 mode does not change to first order. These
selection rules result from the C'P invariance of QED and may be gleaned
from the selection rules for photon splitting (Adler 1971).

Because our analysis tracks the evolution of a single mode, we will calcu-
late the opacity in the limit where the magnetic field of the wave is parallel
to the external field. Waves in the || mode generate higher harmonics in
the || mode but none in the 1L mode. In this limit,

and Equation 6.73 simplifies further,

_ 1e? @ (1Y . @ (1Y) ._ @) (1Y —a| 1 B
© = g X () e () et e (5) e

(Z—Z) 2] (6.95)

We define a dimensionless auxiliary function F(£) to characterize the opac-

+0
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ity due to shocking
1 B
Cc Bk
We define I to be the characteristic length over which the magnetic field of
the wave would change by By. Ip is positive for sections of the wave where
the magnetic field strength increases as its passes a stationary observer, or
equivalently in the frame of the wave itself, [p is positive in sections where
the field strength decreases in the direction of propagation.

The function F(£) may be expanded in the weak-field limit (£ < 0.5)
yielding

J+1 e\’
F) = —4——2 B2(]+1)2 +1£ +0 (E) (6.97)

e (16, 32, e\’
where B,, denotes the nth Bernoulli number. In the strong-field limit (£ >
0.5), we obtain

K=—F()-% =—F()lz" (6.96)

2(21 1 1

F(é-) = %{§E+§(lnr—2—ln£)§—2
D& (-G - =2 }
+§j§ 5 oS- be

(%)2] (6.99)

where ((z) denotes the Riemann Zeta function and we have used the ex-
pansions of Heyl & Hernquist (1997b).

Note from Figure 6.3 that F(&) is positive for all field strengths. Thus,
from examination of Equation 6.96, we see that the opacity is positive
(shocks will develop) in regions where the magnetic field is increasing toward
the direction of propagation in the frame of the wave. F'(£) also reaches a
maximum near the critical field strength.

6.5 The Physical Shock: Evolution and Jump
Conditions

We expect a shock to develop when and where the value of the Riemann
invariant is discontinuous. From Equation 6.67 and using the result B =
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Figure 6.3: The figure depicts the auxiliary function F(£) as a function of
.
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7+ E, we see that the invariants are simply the electric and magnetic field
strengths associated with the wave. Figure 6.4 depicts the evolution of the
wave. The shock begins to form at an optical depth of one where the field
of the wave becomes discontinuous.

As in fluid shocks, dissipative processes prevent the field strengths from
becoming double valued. We use the Maxwell equal area prescription (Lan-
dau & Lifshitz 1987b) to calculate the shock profile after the characteristic
analysis indicates that the field strengths become double valued. We start
with a sinusoidal wavefront,

B(y,t) = —Bysin(y — 04t) = —Bgsinvg (6.100)
and obtain the following equation for the characteristics
v(T) = vo + Tsinvg (6.101)

in the frame of the wave. Furthermore, for convenience we use the optical
depth to shock formation as the time unit.

From Figure 6.4 and Equation 6.101 we see that the wave evolves sym-
metrically about v = 7. The position of the shock is given by the location
which divides the double-valued regions into equal areas. By symmetry this
occurs at v = m. The wavefront at 7 = 2 is constructed in this manner.

To determine the dissipation of energy by the shock, we calculate the
mean power of the wave

1 /7 1 ”
P = —/ o Bidv = —U+B§/ sin? vodv (6.102)
T Jo n 0
B[
= o4— sin” vg (1 + 7 cos vg) dug (6.103)
™ Ju=0

B? 1 1
a+7° (U‘;’S — 7 5in 2v0,6 + gTsin3 UO,S> (6.104)

where vg s is the smallest solution of
T = g,s + TSinVg g (6.105)

That is, the shock is located at vy, = w. For 7 < 1 the only real solution
to Equation 6.105 is vg,s = . Therefore, before the shock forms the mean
power in the wave is simply o B3.

Unfortunately, in general this equation can only be solved numerically;
however, two limits exist which can be treated analytically. As the shock
just begins to develop vy ~ v near the shock, so vg s ~ 7. If we expand
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Figure 6.4: Evolution of a wave toward shock formation in the frame of
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lower panel traces the power spectrum of the wave. The successive lines
denote original wave, the wave at an optical depth of one-half, at an optical
depth of one and at an optical depth of two. The bold line shows a power
spectrum of v—2.
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Equation 6.105 about vg s = m, we obtain

Vos A T— 6r=1 (6.106)
T
1 4
P = o.B|- - i\/6(7 —1)%2 4 —5\/6(7 —1)7/?
2 5w T

+0(r — 1)9/21 (6.107)

We find that as soon as the shock forms at 7 = 1, it begins to dissipate
energy from the wave. Additionally, the dissipation does not begin abruptly.
This first two terms in this expansion are accurate to ~ 1% for 7—1 < 0.2.

At late times, we can find a solution to Equation 6.105 such that v = 0.
Here we obtain

~ 1
Vo.s — (6.108)
2
1
P ~ o.B2T 6.109
7+50 3 (t+1)? ( )

This expression is accurate to one percent for 7 > 5. The upper panel of
Figure 6.5 depicts the energy dissipation soon after the shock forms. It
is apparent that the dissipation begins smoothly. The lower panel shows
the late evolution. The energy of the wave is dissipated within several
shock-formation scale-lengths.

In the preceding analysis we have assumed that the field gradients are
small both in our linearization and in our selection of the Heisenberg-Euler
Lagrangian. Our linearization, specifically the assumption that the gradient
of the fields is small relative to the fields breaks down when

OB
Ae P ~B (6.110)
where ). is the Compton wavelength of the electron. The Heisenberg-
Euler Lagrangian also breaks down when the field changes by Bj over
scales similar to A.. In this limit, one must use more powerful techniques,
such as the proper-time method (Schwinger 1951) to determine the effective
Lagrangian.

When the field changes dramatically over scales similar to A., the wave
carries appreciable energy in harmonics with energies greater than 2m.c?
(Figure 6.4). These photons can participate in one-photon pair production
(e.g. Mészéros 1992), effectively dissipating the wave energy. We estimate
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Figure 6.5: The evolution of the power carried by the wave before and after
shock formation.

the thickness of the shock to be approximately A.. To further understand
the properties of the shock, we derive the jump conditions across the shock
discontinuity.

We move to the rest-frame of the shock and insist on the continuity of
the dual to the field tensor and the energy-momentum tensor:

8,F" =0 and 8,0 = 0 (6.111)
where F#¥ = Let"97Fy, (e.g. Landau & Lifshitz 1987a) and

0
=5 (6.112)
The first condition follows from the gauge invariance of the fields. The
second condition represents the conservation of energy and momentum.
These jump conditions are equivalent to those used by Boillat (1972) who
insisted that the dual of field tensor be continuous and that the Euler-
Lagrange condition be satisfied.

For clarity, in contrast to the analysis of the preceding sections, we ex-
amine the energy-momentum and the field tensors of the combined wave
and constant background field. Using the techniques outlined in Itzykson &
Zuber (1980), we find the energy momentum tensor for non-linear electro-
dynamics. The canonical tensor (©#¥) is constructed from the Lagrangian
by means of a Legendre transformation,

~ oL

om = mamp — gL (6.113)
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where A, is the potential four-vector of the electromagnetic field. We con-
struct the more familiar symmetrized energy-momentum tensor (©#¥) by
subtracting a total divergence,

om = %amp —g"L -9, (%A") (6.114)
- A”ap% (6.115)
_ %F”p _ gL (6.116)

where the final term of Equation 6.115 is zero by the Euler-Lagrange con-
dition and gauge invariance. Using the definitions of I and K we obtain,

oL oL
w — (4% pue _ g7 5% pue ) pv _ v
OH = (48IF 8J8KT )Fp g L. (6.117)
where J = F,, FH¥.
Simplifying this expression yields,

oL oL
pr 1174 v _ L MuV — -
e 45 IF"F," —g (c 2K8K> . (6.118)
which for £ = —1F,, F*, the linear case, yields
1
O = 29" Fypg F" + FUF,". (6.119)

in agreement with Itzykson and Zuber’s (1980) result.

When determining shock jump conditions for a fluid, one calculates
the velocity of the discontinuity relative to the rest frame of the fluid. In
analogy to a fluid, we can associate the rest frame of the electromagnetic
field with the frame in which the energy-momentum tensor is diagonal. This
frame exists if either of the two invariants (I and K) is non-zero. In this
frame, the electric and magnetic fields are parallel and their magnitudes
are given by

B i(H\/pr), (6.120)
2 i(_pﬂ/ﬂ) (6.121)
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If we take the fields to point along the z-axis, we obtain

oL oL
00 11 2 =
0% =-0" = —477E' - L+2K-o, (6.122)
. oL oL
22 33 2 hiad
0% =0 = 46IB + L 2K6K. (6.123)

To apply this to the geometry of the previous sections (Figure 6.1), we will
assume that K = 0 and that the shock front is parallel to the x — z plane
and traveling toward increasing y.

The geometry leads to the jump conditions:

[0%2] = 0,[0%%] = 0 and [F*?] =0. (6.124)

across the shock. We calculate the components of the energy-momentum
tensor in the shock frame through a boost. If K # 0, the Lorentz transfor-
mation from the rest frames to the shock frame would include a rotation as
well. By boosting the rest frames into the shock frame we get the following
jump conditions

0] = [2721;2—?1] =0 (6.125)
0% = [5—2722—?1] =0 (6.126)
72 = [VI/2y] =0 (6.127)

where v is the speed that the diagonalizing frame is moving relative to the

shock and v = (1 — 112)_1/ ?. The three conditions are physically conserva-
tion of energy and momentum flux, and the continuity of the electric field
parallel to the surface of shock. Analogous jump conditions are given by
Landau & Lifshitz (1987b) for relativistic fluid shocks. If we define,

e=w—p=—£,p=£—2g—§I,w=—2(z—§1andn=\/g (6.128)
we obtain the following jump conditions

0% = [y*vw] =0 (6.129)

0%] = [p+7*°w] =0 (6.130)

[F2] = [ywn]=0 (6.131)

Landau & Lifshitz (1987b) give the velocities of the diagonalizing frames
relative to the discontinuity

A p2—pre2+p1 (6.132)

ey —e1 e+ p2
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vy = P2—prer+p2 (6.133)

€y —e1 ey +p1

and the equation of the shock adiabatic

2 2
w1 wa wq w2

—_ = — — 4+ =) = 134

(nl) (nz) +(p2 pl)(n%+n%> 0 (6 3)

where the subscripts 1 and 2 denote conditions on either side of the shock.
The equation for the shock adiabatic is automatically satisfied to first order.

Taking Equation 6.132 and Equation 6.133 and assuming that the shock
strength is a linear perturbation on the background field we get

2
V1,2 = (2[8—£ + a£> 6£

orr " o1)/ ar >

1 oL 0L oL
B? e2\?
o (B—> o <%> 1 : (6.135)

2
) 3
1+(1i1)1 ”ﬂ—lmfﬂ/ac]

- o+ 4 I 2°78m;/ a1

(Z—DT , (6.136)

B2
+0 () +0

1-0?AB . 0L [OL
= o, [14+(1£1) 5 —4B°AB = W]
B2 &2 2
+0 (§> +0 (E) 1 : (6.137)

where AI = I, — I, > 0, AB = B; — By > 0 and we have used Equation 6.68
to simplify the expression. The upper sign corresponds to the field before
the shock passes and the lower sign to the postshocked field. Because both
g% and g—§ are negative we find that vy < 4. Furthermore, with the upper
sign, the first term linear in AT is larger than the second, so v1 > oy. As
a fluid shock, the electromagnetic discontinuity approaches the unshocked
field faster than the speed of light in the magnetized vacuum and withdraws
from the shocked field subluminally.
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6.6 Conclusions

We have derived the characteristic equations for electromagnetic waves in
the presence of a strong external magnetic field. By using a analytic ex-
pressions for the effective Lagrangian of QED, we have obtained simple
expressions to estimate the opacity of waves to shocking for arbitrary mag-
netic field strengths. After the shock forms, the energy of the disturbance
is dissipated with several shock-formation scale lengths. Furthermore, by
calculating the shock jump conditions, we find that as shocks in fluids the
discontinuities overtake the unshocked field superluminally and recede from
the shocked field slower than the speed of light in the magnetized vacuum.

For shocks to form from electromagnetic waves, not only is a strong
external field required but also a source of coherent radiation. A prime
location for electromagnetic shocks is the vicinity of a neutron star with
field strengths approaching and exceeding the critical value and coherent
electromagnetic Alfven waves. The study of the nonlinear corrections to
the propagation of radiation through a plasma is beyond the scope of this
work; however, we expect shock formation to be a hallmark of the nonlinear
corrections of quantum electrodynamics and possibly an important process
in the energy transmission near neutron stars.
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Chapter 7

Magnetically Catalyzed
Fusion

SUMMARY

We calculate the reaction cross-sections for the fusion of hydrogen and
deuterium in strong magnetic fields as are believed to exist in the atmo-
spheres of neutron stars. We find that in the presence of a strong magnetic
field (B > 10'2G), the reaction rates are many orders of magnitude higher
than in the unmagnetized case. The fusion of both protons and deuterons
are important over a neutron star’s lifetime for ultrastrong magnetic fields
(B ~ 10'G). The enhancement may have dramatic effects on thermonu-
clear runaways and bursts on the surfaces of neutron stars.

7.1 Introduction: Atomic Structure in an In-
tense Magnetic Field

In large magnetic fields a hydrogen atom is compressed both perpendicular
and parallel to the field direction. In a sufficiently strong magnetic field
(B > 10" G), the Schrédinger equation for the dynamics of the electron
separates into axial and perpendicular (azimuthal and radial) equations. As
the potential is axisymmetric around the direction of the magnetic field, we
expect no azimuthal dependence in the ground-state wavefunction of the
electron.

In the direction perpendicular to the magnetic field, the wavefunction
can be obtained exactly (Landau & Lifshitz 1977). This azimuthal wave-

7
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function is denoted by two quantum numbers n and m. Here we take n = 0,
as the n > 0 solutions are less bound and therefore provide less shielding.

The perpendicular wavefunction has the same form as the Landau wave-
function for an electron in a magnetic field:

_ 1 m p2 im#
Rom (p,0) = mp exp (‘@) e (7.1)

B () [ ()], o

ag =/ h/mewr = \/hec/|e|H (7.3)

where

7.1.1 The axial wavefunction

Along the direction of the magnetic field, the electron experiences an effec-
tive potential,

Vett,om(2) = ( RZ, (p)2mpdp. (7.4)

RV (r)|R) = /0°° _\/z:fip?

Performing the integral yields
e? -1m
Viwom(s) = /2
afg m.:

(%)m [%exp(ﬂzzﬂafq)erfc(\/md /\/iaH)] ‘ (7.5)

which for large 2 approaches —e?/z. The Schrddinger equation with this
potential is not analytically solvable. We can note certain features of the
desired solution. Because, Vg is everywhere finite, both the wavefunction
and its first derivative must be continuous. Rather than solve the equation
directly, we use a variational principle, which constrains the ground-state
wavefunction (v = 0) along the magnetic field for the given values of n and
m. The index v counts the number of nodes in the axial wavefunction. As
with the n > 0 states, the v > 0 states are barely bound compared to the
v = 0 state.

Looking at the radial wavefunction, we take the wavefunction along the
z-axis to be a Gaussian as well:

2

z—) (7.6)

1
Z(2) = D=———exp (— 5
V2m\/a; 4a?
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We must minimize the integral,

I=(ZHal2) = [ [022m)(V.20 + Va2 0z (D)

—0Q

For this problem the integral is (using the definition of Z and m = 0),

I=2 / T [ B aju? e2\/7r/2exp(u2/2)erfc(u/\/§)] du  (7.8)
0

2m, 4a?

where we have substituted u = z/ag. Next, we use the definition of Z,

h2 a3 o) w2a2
I = 2 H 2 _ H
[2me 1 P27ra§ /0 u exp( 20 > du
e [ 9 u?a?
- exp(u®/2)exp | — 5 erfc(u/v2)dul. (7.9)
0

2
2a, a:

The first integral is tractable yielding the quantity to be minimized,

122[ 1 - ¢ l/Oooexp (u;(l—l/aQ)> erfc(u/\/i)du],

16mea?; a2 2apa
(7.10)

with respect to & = a,/ag. This minimization yields a value of a,. Ta-
ble 7.1 lists the results for the minimization for several magnetic field
strengths and compares them with the eigenvalues for the energy of the
bound state derived by Ruder et al. (1994). Ruder et al. use a series of
basis functions to solve the Schrodinger equation. Our binding energies
fall short of theirs by approximately twenty percent, because we are re-
stricted by our trial wavefunction. We also tried a sum of Gaussians but
this added degree of freedom did not yield significantly more tightly bound
wavefunctions.

Using the results of the minimization, the electron probability density

is

(r,2) ! U (7.11)
= ————=exp|— |5+ .

PR a%a,(2m)3/? P 2a%,  2a?

where we have combined the two Gaussians in a revealing fashion. The

quadrapole moment of the distribution is given by Q = 2a%(a® — 1). Next
we define a quantity

2 2
n?=r?+ (a—H> 2Z2=rt4+ z (7.12)
Gy

and recast the previous equation into the form

(ra)=— - n’ (7.13)
P2 = a%a,(2m)3/2 P 2a% ) ’
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Table 7.1: The results of the Rayleigh-Ritz minimization. Energies given
in Rydbergs (13.6 eV).

Ruder et al. Our Results

B (G) Em:O Em:l Am=0 Em:O QAm=1 Em—l
4.7 x 10° 2.04 1.20 1.14 1.77 1.59 1.15
4.7 x 1010 4.43 2.93 2.00 4.18 2.65 2.85
4.7x 10" | 945 669 | 3.79 891 479  6.44
4.7 x 10'2 18.6 13.9 7.77 17.1 9.35 13.0
4.7 x 10'3 - - 17.3 29.6 20.0 23.6
4.7 x 10 - - 38.1 47.0 46.1 38.1
4.7 x 108 - - 102. 69.6 113. 59.1
4.7 x 106 - - 265. 97.7 288. 84.8

7.1.2 The screening potential

When solving gravitational problems one often looks for electrostatic ana-
logues. Here, we look for a gravitational analogue to an electrostatic prob-
lem. The density of the electron is constant on concentric, similar ho-
moemoids. For this density distribution the potential is directly solvable
(Binney & Tremaine 1987)

®(2) = —G (a2a3) $(o0) — ¥(m) dr  (7.14)
Vi +a?) (T +a3)(r +a?)
where we have the following auxiliary definitions:
2 2 x;
= L 7.15
m a Z:ZI alg +r ( )
and )
m
wm)= [ pm?) dm? (7.16)
0
In our case, we use G = —e?, a; = as = ag, a3 = a, and
1 m?
m) = l—-exp|—==]|. 7.17
B -
Substituting these results into Equation 7.14 yields
oo exp [ 5 (—g—a j_T + azir)]
®(F) = / dr. (7.18)
\/ (T +a%)\/T+a2
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We change variables to simplify the integral. Using the natural units of the
problem, we let ¥ = r/apg, Z = z/an, and u = 7/a%. This gives the new
equation

oo _1(2 L 2
B =< L / o[ (s + o) du (7.19)
am /27 Jo 14+u)Va?+u

where we again use the previous definition of a. The potential at the center
of the electron cloud (r =0,z = 0) is given by

e2 2 In (a+\/a2 — 1)
ag /2w vaz -1 '

Moving away from the origin a change of variables is useful when evaluating
the integral. Let

2(0,0) = (7.20)

1
= 21
YT +u (7.21)
The integral becomes
. 1 2 lexp [—% <F2v + 2271“&371)1))]
(F) = ——— dv. (7.22)
V2mar Jo (a2 =12 +w

As an example we present results for B = 9.8 x 10'2 G. For this field
strength ag =~ 10712 m and a, ~ 107! m, so o = 10. The range of the
nuclear force is approximately 10~*® m or 0.001lag. Figure 7.1 depicts the
potential in units of e?/ay for this configuration. The central potential is
approximately 0.25e¢?/ay and drops quickly in the radial direction. In the
axial direction, the potential forms a “core”

The total potential of the electron cloud and the proton may be approx-
imated by the quadrapole formula

2_1 2
a2 e:—f(:icoszqﬁ—l) (7.23)

V(%) ~—
for large separations.

7.1.3 The cloud-cloud potential

When we consider the interaction between the two electron clouds surround-
ing the protons, we must account not only for their electrical potential but
also the antisymmetry of the mutual electron wavefunction. Because of the
strong ambient field, we expect that both electron spins will be aligned with
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Figure 7.1: The left panel depicts the screening potential as a function of
radius and z-position. The right panel shows the total potential experienced
by an incoming proton. The dashed contour denotes zero potential. The
other contours are logarithmically spaced. In the left panel the bold contour
traces a potential of 0.1e2? /agr. The contour levels increase toward the center
with a spacing of 10!/20 In the right panel the bold contours trace potentials
of £107%,1073.. . €2 /ay.

the field, so the spatial component of the wavefunction must be antisym-
metric. That is,

U(Fy,42) = % (1 (Z1)P2(T2) — h1(Z2)1p2(71)) (7.24)
where
Y1(F) = /p(Z) and 2(Z) = Y1 (& — 7o) (7.25)

with p(Z) given by Equation 7.11 and % is the position of the center of the
second electron cloud.

The potential energy of the two electrons is given by (e.g. Landau &
Lifshitz 1989)

2
L € I
@cc(mo) = //m|\1’($1,$2)|2d3a)1d31‘2 (726)
A(Zo) — J(Zo) (7.27)

where A(Zy) and J(Zp) are given by

2
A(#) = / / 51 (F)pa(E) Bz AP (7.28)
|71 — T2
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//d3$1d3w2l ¢’ |p1($1)p2(w2)

X exp (_ (z1 —@2)xo + (Y1 —y2)yo (21 — 22)20 )}(7_29)

9
~~
&
N

Il

2a% 2a?2
o2
= //d3a:1d33:2 7 = |p1($1)p2($2)
1 (x5 +y5 | %
X exp [—5 ( pra + E (7.30)
2 2
~ = o 40
~ A |- (55 + 5% )] (7.31)

where we have used the Gaussian form of p(Z) to simplify the expression
for J(Zp), and to obtain its approximate value we replace z1 — 22 by g
and similarly for the other coordinates.

To calculate the direct term of cloud-cloud potential (A(Zp)) we will
take advantage of the special form of the density distribution given in Equa-
tion 7.11. The direct term is in general given by

A(Zo) = /d3$1p(f1 — o) ® (1) (7.32)

which is simply the convolution of the density distribution with the poten-
tial. If we perform the Fourier transform of the right-hand side we get

A(F) = / a7 (F) & (F) e 2. (7.33)
Expressing the Poisson equation in Fourier space gives
= d*k 5<E) —ik-3

d(F) = —47r/ G2 1 e . (7.34)

Because the magnetic field induces the deformation of both electron clouds,
the clouds are aligned, and they have the same Fourier transforms; there-
fore,

(R
A(fo) = —47T/d3kk72€_zklmo. (735)

Because p is a three-dimensional Gaussian, so is its Fourier transform; con-

sequently, \
)] = g (v59) =
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Combining Equation 7.35 and Equation 7.36, yields

3 1 p(Vek)
A(il)o) = _47T(27T)3/2 /d%ﬁ%e ik %o, (737)

Performing a change of variables =2k gives

! (0
Az = —4 3 7zl-zo/\/§_ .
(o) Wﬁ(27r)3/2 /dl e (7.38)
Comparing this equation with Equation 7.34, we get
1 Zo
A(Zy)=—4=®(—+=). 7.39
(@) = 5 ( ﬁ) (7.39)

Therefore, the total potential energy between two hydrogen atoms sepa-
rated by & in the magnetic field is given by

v~ s e (L) (1-e "oz 23 (%) (7.40)
N+ =0 = —exp |— | =5 - i

r V2 \W/2 P 2a%,  2a2
where ® () is simply the potential induced by the Gaussian cloud of charge
(Equation 7.22).

Far from the atoms (r > aag), the interaction energy may be approx-
imated by the quadrapole-quadrapole energy,

o 3, 2 e’al; 1 5
V(%) ~ 1 (@® —1) - (35 cos® ¢ — 30 cos® ¢ + 3) . (7.41)
where ¢ is the angle relative to the symmetry axis of the atom.

Figure 7.2 and Figure 7.3 depict the total potential energy between two
hydrogen atoms in a magnetic field for the same magnetic-field strength
as Figure 7.1 (B = 9.8 x 10'>G). A comparison of the two figures illus-
trates that the exchange term provides a slight attractive force between
the two electron clouds, because of the anticorrelation of the clouds. At
large separations, both potentials are well approximated by the quadrapole-
quadrapole formula (Equation 7.41).

7.2 Estimating Reaction Rates

In a fluid state, there will be three possible reaction channels,

e proton-proton dominates in hot, totally ionized gas
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Figure 7.2: The figures depict the total potential energy between two mag-
netized hydrogen atoms excluding the antisymmetrization energy. For the
left panel, the contour spacing is the same as in right panel of Figure 7.1.
The right panel illustrates the potential along the axis of the magnetic field.
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Figure 7.3: The figures depict the total potential energy between two mag-
netized hydrogen atoms including the antisymmetrization energy. For the
left panel, the contour spacing is the same as in right panel of Figure 7.1.
The right panel illustrates the potential along the axis of the magnetic field.
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e proton-atom dominates in nearly completely ionized gas
¢ atom-atom dominates in neutral and partially ionized gas

For the first channel, we can use the standard thermonuclear reaction rates
(e.g. Clayton 1983). For the latter two channels we must include the screen-
ing potentials that we calculated in the previous section to determine the
potential wall through which the interacting particles must penetrate.

7.2.1 The transmission probability
In the WKB approximation, the probability to traverse through a potential

wall is
exp (—2 /VVall dry/ ;—Tg (V(r) - E)) (7.42)
exp ( 2v/2mapy — ‘/W . H ez/aH ) (7.43)

exp< 26. 693_1/4/ du\/V(u) — ) (7.44)
Wall

R

b

Q

Q

where By, is the magnetic-field strength in units of 10'2 G, v is the dimen-
sionless radius r/ag and £ and V are the dimensionless energy Eag/e? and
potential.

For the proton-atom channel, the potential includes both that of the
nucleus V = 1/u and the surrounding electron cloud (Equation 7.22). At
large distances from the nucleus, u >> «, the total potential is well ap-
proximated by the quadrapole (Equation 7.23). For the atom-atom channel,
the total potential includes contributions from the proton-proton, proton-
electron and electron-electron potentials (Equation 7.40), which is well ap-
proximated by the quadrapole-quadrapole formula (Equation 7.41) for large
separations.

To calculate the transition probability, we use these quadrapole formulae
to approximate the potential for u > 4a and for u < 1/2, we approximate
the potential energy between the electron clouds and the electron clouds
and the protons by their central values. This both speeds the calculation
and reduces the numerical error.

Figure 7.4 traces the transmission probability for protons to interact
with atoms and atoms to interact with atoms at zero relative energy as
a function of angle and magnetic field. In the atom-proton case, the pro-
tons can most easily penetrate through the mutual potential barrier along
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Figure 7.4: The left panel depicts the transmission probability as a function
of angle and magnetic field for a proton and an atom to interact at zero
relative energy. The right panel depicts the same probability for two atoms.
The solid lines trace the probability if the antisymmetrization energy of
the electrons is considered. The dashed lines show the probability without
antisymmetrization.

the axis of the magnetic field and the penetration probability increases
markédly with the strength of the magnetic field. In the atom-atom case,
we see that the maximum transmission probability occurs at an angle to
the field direction and that with antisymmetrization of the electron density
the transmission probability increases dramatically. For the reaction rate
estimates that follow we will account for the antisymmetrization energy of
the two electron clouds.

To translate this transmission probability into a cross section, we must
average |T'|? over a sphere and include the appropriate S-factor for the
reaction where S(E) is defined as

S(E) = cE|T|? ~ So(1 + S.E) (7.45)

In this way, the strong energy dependence of the reaction cross section
is removed. For the reaction 'H(p,etv)D, Sy = 4.38 x 10~2® MeV-barn
and S; = 11.2 MeV™" at low energies (Bahcall et al. 1982). The reaction
of the less abundant deuterons with protons has a much larger S-factor of
So = 2.5 x 10~7 MeV-barn and S; = 27.8 MeV ™" (Clayton 1983).
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Given these definitions, the reaction proceeds at a rate of

ri2 = (1+812) 'nins (ov) (7.46)
1/2
= (]. + (512)71711”2 (%) S()(]. + SlkT)(k‘T)il/2|T|2 (747)

where p is the reduced mass of the reactants, and nq,ns are their number
densities. r12 has the units of reactions per unit time per unit volume, so
we can define a typical timescale for a reactant to be consumed

Tiz = N1 /712 (7.48)

We will use this timescale to assess the effectiveness of the screening in
catalyzing the nuclear fusion reactions. We also account for the increasing
excitation of the gas as the temperature increases and the onset of ther-
monuclear reactions above several million degrees.

7.2.2 The ground-state fraction

The screening is much less effective if the electron is in an excited state, so
we estimate the fraction of atoms in the ground state by first calculating
the ionization equilibrium and then the fraction of neutral atoms in the
ground state.

Lai & Salpeter (1995) give the form of the Saha equation for hydrogen
atoms, electrons and protons in equilibrium in the presence of a quantizing
magnetic field. Throughout this formalism, we use the natural units of the
problem, 4.e. T is the temperature in units of 3.15x 10° K, M is the mass of
the system in units of the electron’s mass (1840 for hydrogen and 3670 for
deuterium), b is the strength of the magnetic field in units of 2.35 x 10° G
and n, is the number density of the gas in units of 6.76 x 10**cm=3.

We first look at the unexcited hydrogen atom. For the partition function
of the ground state in a quantizing magnetic field, Lai & Salpeter (1995)

give "
MT EH
Zgrouna(H) = n,'/? (§> exp (%) Z (7.49)
where E(H) = —0.161% (the ground-state energy of the atom), [ = Inb, and
—2/3  pKimax
- M _EL(K))
ZJ_ = (27]_)2 /) 27TKJ_dKJ_ exp [ T (750)
—2/3  pKimax 2
~ M T KL
Z =~ o ‘/0 KJ_dKJ_eXp[ 2MJ_T1n (1+ = )] (7.51)
MYT
= n, =, (7.52)

g 27
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where M| = M + &b/l (with £ ~ 2.8) and

M2
T~ 0.641£b [1 + E] . (7.53)

Here we have explicitly integrated to K | max, s0 we replace M of Lai
& Salpeter (1995) with M7,

K2 —7/2M\ T
MY =M [1- (1 + M) (7.54)
T
and M is as given by Lai & Salpeter (1995),
oM T\ !
M| =M, (1 Snats ) . (7.55)
T

As K max — 00, M| — M/ and we recover the Lai & Salpeter (1995)
result. K| max is the upper limit on the perpendicular momentum for the
given state. The electron clouds of neighboring atoms should not overlap;
otherwise, the gas would become pressure ionized. Therefore, we take the
size of the state, Rk = K, /b < Ry, = ng_l/ % as the defining condition on
K| max- We obtain

K max = bn, /3. (7.56)
The total partition function of the neutral atom is given by
Z(H) = Zground(H)z,(H)zm (H) (7.57)

where z, and z,, are the partition functions for excitations of the v and
m quantum numbers respectively. Lai & Salpeter (1995) argue that the
2y (H) ~ 1 as these states are hardly occupied relative to the ionized, m > 0
and ground states. For the contribution of the m > 0 states to the partition
function, they obtain

2m(H) ~ (1+e_b/MT) i _1
m=0

T

MY b
J\/;i exp [ (0.16l2 —0.1612, +m—>] :

M

(7.58)
where we have several additional auxiliary definitions:

zm:m( b ) (7.59)

2m +1

and as with ground state we correct for K| nax < 00 with

K2 —Tm/QMimT
M, =M\, ll - (1 + —LTmaX) ] (7.60)
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and M/, is as given by Lai & Salpeter (1995),

oM, T\
M|, =M, (1 - i) . (7.61)
Tm
M ., is given by the following relation
M b m+1 m
l—gr— = o 2 2 2
Mim M |b/M+01612 —0.1617,, b/M+0.1617,_, —0.1612,
(7.62)
and we use the following additional definition
M 2
~0640,, (M1 — M) |1+ —— .

The ratio of the number of atoms in the ground state to the number of
neutral atoms is given by

Xground (H) Zground (H) 1
= = . .64
X (H) Z(H) ) (764
Next we calculate the ionization-recombination equilibrium.
X(H) Z(H)
= 7.65
X,X. ~ Z@)Z0 (7.6)
b\, / T\ b
e (L) et (2) i ()
E(H
X exp (%) 2m(H), (7.66)

where X (H) = n(H)/ng, Xp = np/ng, Xe = n./ngy are the number density
fractions of the different species.

Combining Equation 7.64 and Equation 7.66 yields the fraction of “shielded”

nuclei as a a function of temperature, density and magnetic-field strength.
Figure 7.5 depicts the fraction of unexcited hydrogen atoms in the gas as
function of temperature for several field strengths and two densities.

7.2.3 Thermonuclear reactions

We parameterize the thermonuclear reaction rates (e.g. Clayton 1983) by
Top = 3.06x 10_37cm3sec_1nf,TG_z/3 exp(—33.71T6_1/3) (7.67)
rop = 3.28 x 10 cm3sec tn,np Ty 2/° exp(—37.11T, /%).(7.68)
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Figure 7.5: The ground-state fraction as a function of temperature, density
and magnetic field. The left panel shows the neutral fraction as a dashed
line and the unexcited fraction as a solid line for p ~ 1 g cm™ and B =
10'2,10' and 10'® G. The right panel is for a density p ~ 1000 g cm™3.

The timescale for the exhaustion of a particular reactant becomes

ni

(7.69)

1 = .
Tthermo T Tmagneto

Figure 7.6 shows the reaction timescale for the consumption of hydrogen
and deuterium in the reactions p(p,eTv)D and D(p,~)>He respectively for
a magnetic field of 10'8G.

Even in this very strong magnetic field, the p-p reaction proceeds only
very slowly below temperatures of one million degrees; however, over mil-
lions of years, the hydrogen gas would be processed to deuterium and then
to helium in such a strong magnetic field. It would provide a steady source
of energy, while eroding the storehouse of hydrogen which could potentially
fuel a thermonuclear runaway. Relatively, the second reaction proceeds in-
stantly with timescales of less than one year for the interesting range of
densities and temperatures.

For the weak fields depicted in Figure 7.7 only the deuterium reaction
proceeds at a significant rate.

7.3 Discussion

We find that in strong magnetic fields (B > 10'2 G), the cross-section for
nuclear fusion is dramatically larger than in the unmagnetized case. For
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Figure 7.6: The two panels depict the reaction timescale for the reactions
p(p,etv)D and D(p,~)3He for B = 10'®G over a range of temperatures and
densities. The dashed contour traces 7 of one second. The solid contours
trace loci of timescales ranging from one year to 10'° years with a factor of
ten in between each contour.
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Figure 7.7: The two panes depict the reaction timescale for the reaction
D(p,v)®He for B = 10*G and 102G over a range of temperatures and
densities. The dashed contour traces 7 of one second. The solid contours
trace loci of timescales ranging from one year to 10'° years with a factor of
ten in between each contour.
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these strong fields, deuterons fuse to *He over short timescales (g 108 yr)
for the density and temperatures expected on the surface of a neutron star.
Because of the inherent weakness of the p — p interaction, the fusion of
protons to deuterium is only important over cosmological timescales for
ultrastrong fields (B > 10'® G) in spite of the large enhancement in the
cross section of this reaction.

For larger atoms (Z > 1), we expect that reaction cross-sections will
also be larger in the presence of an intense magnetic field. However, the
shielding is unlikely to be as effective as for the Z = 1 case, because addi-
tional electrons must occupy m > 0 levels which are much less effective at
screening the nuclear charge.
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Chapter 8

Hydrogen and Helium
Atoms and Molecules in
an Intense Magnetic Field

SUMMARY

We calculate the atomic structure of hydrogen and helium, atoms and molecules
in an intense magnetic field, analytically and numerically with a judiciously
chosen basis.

8.1 Introduction

The problem of atoms and molecules in a magnetic field is both a classic
example of time-independent perturbation theory and a vexing challenge
in the study of neutron star and white dwarfs. A sufficiently intense mag-
netic field cannot be treated perturbatively. The spectra and properties of
neutron-star atmospheres depend crucially on magnetic field. Indeed, in
the intense magnetic field of a neutron star B > 10'® G the nucleus rather
than the field acts as a perturbation. The electron is effectively confined to
move along the magnetic field lines.

This work extends classic analytic work on the one-dimensional hydro-
gen atom (Loudon 1959; Haines & Roberts 1969) to form the basis of a
perturbative treatment of hydrogen in an intense magnetic field. This an-
alytic treatment yields binding energies for B > 10'> G whose accuracy
rivals that of the recent exhaustive treatment of hydrogen in an magnetic

95
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field by Ruder et al. (1994) with substantially less computational expense.

We also present a straightforward numerical treatment of the hydrogen
atom, the hydrogen molecular ion and the helium atom. The electron wave-
function is expanded in a convenient basis, and the Schrédinger equation
may be solved approximately by diagonalizing a suitably calculated matrix.
The effective potential between the electrons and between the electrons and
the nuclei may be determined analytically, expediting the calculation dra-
matically.

8.2 The Single Electron Problem

We begin with the problem of a single electron bound by the combined field
of an atomic nucleus and strong external magnetic field. The Hamiltonian
for the electron is given by

P2 Ze?

H=—-——4u-B 8.1

o~ H (81)
where we have assumed that the nucleus is infinitely massive, M is the mass
of the electron and P =p —e/cA.

To derive the Schrédinger equation for the electron, we make the replace-

ment p = —ihV. We take the magnetic field to point in the z-direction
and choose the gauge where Ay = Bp/2, A, = A, = 0 and obtain

- ih 0 1e _,, Ze® pu
(~a3™" ~ a1l + 537”0~ -~ e = B) v =0
(8.2)

where 1 denotes the spin and spatial coordinates of the electron i.e. r1,0;.
The spin portion of the wavefunction decouples from the spatial component;
therefore, we take the electron spins antialigned with the magnetic field to
minimize the total energy, i.e. to calculate the ground state.

For Z = 0, we recover the equation for a free electron in an external
magnetic field which is satisfied by a function of the form

Ynmp, (r) = an(pa ¢)€izl’z/ﬁ (83)
where
1 <|m|+n)!]1/2 ( ,,2)
Rom ) = — 7 2 Im|
) = i | @ () 77

lFl(_n7 |m| + 17 p2/2a%1)eim¢)7 (84)
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where ay = \/h/Mwy = \/hc/le|B (Landau & Lifshitz 1989), and (F} is
the confluent hypergeometric function.

It is convenient to define a critical field where the energy of the Landau
ground state hwp /2 equals the characteristic energy of hydrogen e?/ao,
where the Bohr radius, ag ~ 0.53A. The transition to the intense magnetic
field regime (IMF) occurs at (Canuto & Kelly 1972)

3
By = 2m%c (%) ~ 4.701 x 10° G. (8.5)

We will express field strengths in terms of § = B/B;.

For Z # 0, the complete solution may be expanded in a sum of ¥y,
since these form a complete set. However, for sufficiently strong fields,
one can treat the Coulomb potential as a perturbation and use the ground
Landau state with the appropriate m quantum number as the first ap-
proximation to the radial wavefunction; this is known as the adiabatic
approximation.

Equivalently, the adiabatic approximation assumes that the Coulomb
potential does not effectively mix the Landau states, i.e.

‘(an|V(T)|Rn’m>

i < 1. (8.6)

To determine the validity of the adiabatic approximation we calculate this
quantity for the first two Landau states and m = 0,

(Roo|V (r)| R10)
202 B M c?

1 —Ze?
202BMc a%

e o] 1 p2 p2
1- ~ 2 ) pd
/0 \/—zupz( 2ai[)e"p( 2ai[)””
1 —Ze?
202BMc2 a%

(o] 2 2 VA
f (ag)eo (mag ) =55 o9

where a =~ 1/137 is the fine structure constant. We find for § = 1000
(B = 4.7 x 10'? G), that the Coulomb potential mixes the Landau states
of hydrogen by at most 1.4 %. For stronger fields, the mixing is even less
important.

In the adiabatic approximation, we assume that

Yomu (1) = Rom(p; #) Zmy (2)x(0) (8.9)

(8.7)




98 ATOMS AND MOLECULES IN STRONG MAGNETIC FIELDS

where Z,,,(z) remains to be determined, v counts the number of nodes in
the z wavefunction, and we expect the axial wavefunctions to be different
for different values of the magnetic quantum number m. We will use the
notation, |0mv), to designate the eigenstates.

For n = 0, the functions R,,, assume a simple form

1 2
- Im| oxpy [ =P
\/2|m‘+17r|m|!a|;|+1p P ( da3

s (=D 1 a\™ P’
|Rom (p, 9)| —Wg (@) [exp <_Hﬂ>] -1

With these assumptions the functions Z,,,(z) satisfy a one-dimensional
Schrédinger equation,

(8.11)

I

H, - E)Z = [—m@

+ V;H’Om(z) — E,,m:| Z,,m(z) = 0, (812)
where

Vet om (2) = ( | Rom (p)|2 2rpdp.  (8.13)

(e} Z€2
RIV(r)|R) = / 2
| | 0 V22 +p?
Performing the integral yields (Lai, Salpeter & Shapiro 1992; Canuto &
Kelly 1972)

2 —1)lm|
Veram(s) = -2 %
d ‘ml 1 2 2
(@) [ﬁexp(ﬁz /2aH)erfc(\/E|z|/\/§aH)] _ (8.14)

which for large z approaches —Ze?/z. The Schrodinger equation with this
potential is not tractable analytically. We can take one of two paths. First,
the potential may be replaced by a simpler yet still accurate function. Sec-
ond, we attempt to solve the Schrédinger equation numerically.

8.3 Analytic Solution

8.3.1 The Approximate Potential

The potential given in Equation 8.14 for arbitrary m may be approximated
to within 30 % over the entire domain by the much simpler form

Ze?

—_—— 1
|2| + kmamH (8.15)

V:eff,Om(z) ~ Vvapprox,Om(z) =
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Figure 8.1: The relative difference between the effective potential and the
approximated potential. The solid line traces the difference for the m =0
state and the dotted line gives the m = —1 state.

where

Ze? T(jm| +1) \/5 2/™l|m|!
kym = — = \/é =\ 8.16
arr Vesr,om(0) L(lm|+ 3) 7 (2lm| — 1)!! (8.16)

The double factorial is defined by (—1)!! =1 and (2n+1)!! = (2n+1)(2n—
D! For large m, 1kmapg asymptotically approaches \/2[m|+ lag, the
mean radius of a Landau orbital.

As we see from Figure 8.1, the relative difference between the two ex-
pressions is largest near z = kpag. For m = 0, the difference is greater
than 5 % from z = 0.1 to z = 10. We do not expect this approximation to
yield eigenvalues accurate to better than ~ 10% for wavefunctions peaked
in this range.

We obtain the following eigenvalue equation with the approximated po-
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tential,
K2 d2? Ze?

AR T e kay ~ Fomr| 2) =0 (8.17)

This equation is nearly identical to the Schrédinger equation with a Coulomb
potential; therefore, we treat it as a Coulomb problem by using the natural
units (Bohr radii for length and Rydbergs for energy),

X 2F

z = Eeg and € = m (818)
which yields
d? 27
[@—F (6+7|C|+Cm>:| Z(¢) =0. (8.19)

where (p, = km/1/20
Again as in the Coulomb problem, we perform the following substitu-
tions

1 e
n= T and £ = 5 (8.20)
yielding,
d? 1 nZz
it (it re) | 1o -o (820

This equation may be solved in terms of Whittaker’s functions (Abramowitz
& Stegun 1970). First, we have

Zi(§) = AxMyz1/2(1€] +E&m)
AL (€] + &m) 1F1(1 = nZ,2, €| + En)e” (81+6m)/2 (8 22)

where A4 are the normalization constants for £ > 0 and £ < 0 respectively.
Unless nZ is an integer, these solutions tend to infinity as & goes to infinity.

As with the equation for an unmagnetized Coulomb potential, there
exists an additional set of solutions. For the three-dimensional Coulomb
problem, this solution diverges at the origin and is unphysical. However,
here we can obtain a well behaved solution. By the method of reduction of
order, we obtain the alternative solutions,

Z5(8) = AxWnz1p(El+&m)
AL(€] + €m) FL(1 = nZ,2,|€] + &g )e (E1HEm/2

[€]+Em et
/ Sdt. (8.23)
(t 1}711(1 - TLZ, 27t))
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These solutions agree with earlier treatments of the one-dimensional hy-
drogen atom (Loudon 1959Haines & Roberts 1969). For integer values of
nZ, the integral in Equation 8.23 diverges; therefore, the eigenvalues differ
from those of the unmagnetized Coulomb potential. Additionally for the
unmagnetized Coulomb potential, &,, = 0 and the prefactor of (|¢| + &) is
absent. We find that in this case, this wavefunction diverges as £~! near
the origin and only the counterparts of the states given by Equation 8.22
are physical.

The solutions to Equation 8.17 will be made of a linear combination of
Zy and Zs. For a given magnetic quantum number m, the excitations along
the magnetic field axis will be denoted by v with v = 0 being the ground
state. Determining the ground eigenvalue of Equation 8.21 for a given value
of &, proceeds in reverse. Since the ground state is even, we have A, = A_
and Z'(0) = 0. One first selects a value for 0 < nZ < 1. To have the correct
behavior as z — oo, we perform the integral of Equation 8.23 from |£| + &,
to oo and calculate Z,,0(&) for &, = 0.

With the calculated function, one can determine where Z, ,(£) = 0 and
use this as the value of &, corresponding to the eigenvalue nZ. The value
of &, is simply related to the field strength,

_ 2

I

B (=2) (8.24)

8.3.2 First-order Binding Energies

As an example we take Z = 1 and n = 1/4/15.58. This corresponds to a
bound state (|000)) with an energy of 15.58 Ry. We find &, = 0.141 which
yields 8 = 1000. For 8 = 1000, Ruder et al. (1994) obtain a binding energy
for the m = 0, v = 0 state of 18.60986 Ry. However, it is straightforward to
improve upon our estimate of the binding energy by treating the small dif-
ference between the approximate and effective potential as a perturbation.
We obtain

EN) = (Zoo| H'| Zimo) (8.25)

m0 —
where H' = Vog — Vapprox. We then obtain the binding energy to first order
of 18.48 Ry for 8 = 1000.

This technique may also be applied to states with m < 0 by using the
appropriate value for k,, in Equation 8.17. For example, also for 8 = 1000
and m = —1 (|0 — 10)), we obtain the zeroth order binding energy of
10.45 Ry and the first-order corrected value of 13.71 Ry compared to the
result of Ruder et al. (1994) of 13.90394 Ry. Since Equation 8.15 is a better
approximation to the effective potential for electrons in the m = 0 state
than in m > 0 states we obtain eigenvalues to first order within 0.7 % of
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Figure 8.2: The function Z3(&) for § =0 for nZ =1/2,3/2,5/2.

the fully numerical treatment for 8 > 1000 for these states (compared to
within 1.4 % for m = —1 states).

To calculate the wavefunctions with v > 0, we calculate Z5(§) for nZ >
1 and use the first extremum or zero of Z»(&) as the value of &, for the even
and odd solutions respectively. Figure 8.2 depicts Z»(&) for several values
of nZ. For nZ between k and k + 1, Z(z) has k zeros and k + 1 extrema.
Therefore, we find that the v > 0 states have zeroth-order binding energies
of fractions of a Rydberg. The calculation of Z5(&) is complicated by the
fact that the function Z; (&) also has zeros in the range of integration from
£ to 0o which make Equation 8.23 ill defined. To pass over the singularities
in the integrand, we integrate the differential equation 8.21 directly.

For smaller values of nZ in the range k to k + 1, the first zeros and
extrema approach £ = 0. Therefore, for larger values of 3, the zeroth order
eigenvalues of the v > 0 spectrum approach the Bohr energies. The energies
of the odd states approach the Bohr energies from below (i.e. they are more
weakly bound), and the even states with the same number of nodes are yet
more weakly bound (Haines & Roberts 1969).
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Our first-order adiabatic approximation is less accurate for smaller field
strengths. For 8 = 100 and m = 0 (|000)), we obtain a first-order cor-
rected eigenvalue of 9.348 Ry compared to the numerically derived value of
9.4531 Ry (a difference of 1.1 %). However, for fields of B > 5x 10! G, the
wavefunctions and binding energies derived in this section for m < 3 and
arbitrary v are sufficiently accurate for all but the most precise analyses.

8.3.3 Perturbed Wavefunctions

To obtain first order corrections to the wavefunctions Z,,,, and second order
corrections to the binding energies, we follow the standard techniques for
time-independent perturbation theory (Bransden & Joachain 1989). We
must calculate the following quantities

Hlllp/ = <ZmV|HI|Zm,u> (8.26)

for a particular value of 3. Since both Veg and Vapprox are symmetric about
z =0, H,,, is zero for v odd and p even.

We obtain .

Z0) =y — 70 (8.27)

v E(O) _ E(O) mi
uFr TV w
and P
EQ) =Y —o (8.28)
my (0) (0)
v Ev” = B

For 8 = 1000, the mixing among the v states is on the order of a few
percent. The second order corrections to the binding energies for the ground
(v = 0) state is 1073 times the first order correction. For the excited states
with v < 6 the second order correction is less than six percent of the first-
order correction; we quote the binding energies to first order for the several
of the most bound levels of hydrogen for 8 > 1000 in Table 8.1 and depict
the wavefunctions to zeroth order for 8 = 1000 in Figure 8.3.

8.4 Numerical Solution

8.4.1 The Basis Set

We can make substantial progress by carefully selecting a basis to expand
the solutions Z,,,. Specifically, we choose

Zum(z) = Z Aumkgk(z) (829)
k=0
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Figure 8.3: The axial wavefunctions of hydrogen in an intense magnetic
field (analytic calculation) for 8 = 1000. The left panel depicts the first
four even states with axial excitations (|000),|002), |004),]|006)). The right
panel shows the first two odd states (]001),]003)).

Table 8.1: The zeroth and first-order binding energies of hydrogen in an
intense magnetic field in Rydberg units
|000) |0 — 10) |0 — 20)

8 Ey Ey Ey Ey Ey Ey
1x10% | 1558 18.48 | 10.45 13.71 | 8.779 11.76
2x10% | 18.80 22.26 | 12.81 16.73 | 10.83 14.46
5x10% | 23.81 28.09 | 16.57 21.51 | 14.12 18.73
1x10* | 28.22 33.19 | 19.94 25.73 | 17.10 22.55
2x10* | 33.21 38.91 | 23.81 30.53 | 20.56 26.93
5x 10* | 40.75 47.49 | 29.76 37.81 | 25.91 33.61
1x10° | 47.20 54.76 | 34.95 44.08 | 30.60 39.40
|001) [002)

g Ey Ey Ey Ey
1x10% | 0.9401 0.9888 | 0.5841 0.6215
2 x 10% | 0.9559 0.9935 | 0.6062 0.6322
5x 102 | 0.9710 0.9970 | 0.6329 0.6560
1 x10* | 0.9790 0.9983 | 0.6518 0.6730
2 x 10% | 0.9849 0.9990 | 0.6684 0.6880
5x 10* | 0.9903 0.9996 | 0.6885 0.7060
1x10% | 0.9931 0.9998 | 0.7027 0.7188
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where

Gi(z) = (277)1/4\1/mﬂk ( \/ga) exp (—%) . (8.30)

Hy(z) are the Hermite polynomials which are orthogonal on the interval
—00 to oo with the weighting function exp(—2z2). The G, are the solutions to
the Schrodinger equation for a harmonic oscillator potential; consequently,
they provide a complete set for expanding the functions Z,,(2).

To obtain the coefficients in the expansion, we calculate the matrix
My = (Gr|H:|G1) (8.31)

which is a function of az and the azimuthal state given by m. We calculate
this matrix for k,l < N (N = 5—50) and diagonalize it. The eigenvalues of
this matrix (\,) are E,n,, and the eigenvectors are the coefficients A, pmp in
Equation 8.29. Additionally, the functions Z,,(z) and Gi(z) have definite
parity; consequently, for even parity solutions to Equation 8.12, only the
elements of My; with k and [ even need to be calculated. This reduces the
size of the matrix from N2 to N2/4.

Because the number of basis functions used is not infinite, we cannot ex-
pect the expansion to span the Hilbert space of solutions to Equation 8.12.
To estimate the solution, we vary az to minimize the eigenvalue A, cor-
responding to the bound state that we are interested in. By using an ex-
pansion of the form Equation 8.29, the binding energies and wavefunctions
may be estimated for excited states along the z-axis.

Although the functions Gy, satisfy a much different equation from Equa-
tion 8.12, if sufficiently many Gauss-Hermite functions are included, we
can obtain highly accurate eigenvalues and eigenvectors. For the ground
state (|000)) with the first 31 Gy, we obtain a binding energy of 18.5579 Ry
at B = 1000, within a factor of 3 x 103 of the result of Ruder et al. ,
18.60986 Ry. The results are equally accurate for the first excited state
(|001)); however, states with more nodes require additional terms in the
expansion to achieve the same accuracy. Figure 8.4 compares the zeroth-
order analytic wavefunction with the numerical wavefunction determined
by this technique.

Obtaining an additional few parts per thousand in accuracy can only
justify a portion of the additional computation required for this numerical
technique; however, this technique may be applied to solve the Schrédinger
equation for potentials more complicated than Equation 8.14.
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Figure 8.4: A comparison of numerical and analytic wavefunctions for hy-
drogen. Both panels are for 8 = 1000. The left panel displays the state
|000), and the right shows |001). The dashed line traces the numerical re-
sults with the first 31 Gi. The solid line traces the zeroth-order analytic
solutions.

8.4.2 The HJ molecule

Before proceeding to the multi-electron problem, we study the binding en-
ergy of the Hf molecule in an intense magnetic field. This system retains
the symmetry under parity of hydrogen, so the numerical technique may
be applied directly with only two alterations.

The effective potential is now given by

Ve om,uif (2) = Vettom (2 + ) + Vesrom (2 — @) (8.32)

and we must vary the internuclear separation 2a to find the minimum
binding energy for the entire system (the Born-Oppenheimer approxima-
tion, e.g. Bransden & Joachain 1989). We find the ground state, |000), at
B = 1000 has a binding energy of 28.3457 Ry, compared to the Le Guillou
& Zinn-Justin (1984) result of 28.362 Ry. The internuclear separation is
0.1818ayg; Le Guillou & Zinn-Justin (1984) find 0.181ag. Figure 8.5 depicts
the wavefunctions of the ground and first excited state |0 — 10) for H .
The accuracy of our analysis of Hf is insufficient to determine if the
ungerade state is slightly bound or unbound relative to a hydrogen atom
plus a proton. However, in the magnetic case, the electron may be excited
into the |0m0) states whose axial wavefunctions are similar to that of the
|000) state. The |0 — 10) state is much less bound at 20.4252 Ry than the
|000) state (compared to 18.5579 Ry for the H+p system). For stronger
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Figure 8.5: The ground and first-excited state of Hy . The solid line traces
|000), and the dashed line follows |0 — 10). The triangles give the positions
of the protons for the ground state and the squares for the excited state.
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Table 8.2: The binding energy of H} in an intense magnetic field. The
values have been derived numerically and the final column gives the nu-
merically derived binding energy of ‘ch(j,r ground state of H for comparison.
H

2

B |000) |0 —10) | |000)
1x10% | 28.35 20.43 | 18.57
2 x10% | 35.04 25.63 | 22.37
5x 10% | 45.77 34.08 | 28.25
1 x 10* | 55.37 41.83 | 33.37
2 x 10* | 66.56 50.86 | 39.11
5x 10* | 83.45 64.95 | 47.70
1x10° | 98.27 77.38 | 54.96

fields, the |0 — 20) and more excited states are bound relative to the H+p
system.

Table 8.2 depicts the numerical results for the ground and first excited
state of Hi in an intense magnetic field. The ratio of the binding energies of
the |000) and |0—10) for Hy is approximately equal to the ratio the energies
of the same states of hydrogen and the same magnetic field strength. This
observation provides a quick way to estimate the energies of the excited
states of H from the binding energy of the ground state.

Table 8.3 presents results calculated for different values of magnetic
field. Our values differ by less than 0.5 % for B > 10'2 G and by ~ 1%
for the two weaker fields considered. We see that the first excited state of
Hi becomes bound relative to hydrogen atom and a proton at B ~ 10'2 G.
Furthermore, a comparison of Table 8.3 with Table 3 of Lopez, Hess &
Turbiner (1997) shows that the ungerade state is unbound for B > 10! G.

8.5 The Multiple Electron Problem

To calculate the atomic structure of multi-electron atoms, we employ a
single-configuration Hartree-Fock technique. Specifically, we assume that
the multi-electron wavefunction is given by a single Slater determinant of
one-electron wavefunctions. These wavefunctions are varied to minimize
the total energy of the system given the constraint that each one-electron
wavefunction remains normalized.

This minimization results in the following eigenvalue equations for the
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Table 8.3: The binding energy of Hf in an intense magnetic field for com-
parison with the results of Lopez, Hess & Turbiner (1997).
H H
B (G) |000) |0 —10) | |000)
1 x 10! | 7.347 4.880 | 5.611
5x 10! | 13.37 9.188 | 9.568
1x10'? | 17.05 11.88 | 11.87
2 x 102 | 21.53 15.25 | 14.58
5x 102 | 28.89 20.85 | 18.89
1x10'3 | 35.69 26.14 | 22.74

individual wavefunctions,

F(1)i(1) = eipi(1) (8.33)

where 1 denotes the spin and spatial coordinates of the electron i.e. r1,07.
The operator F'(1) is the sum of a kinetic and potential energy term

F(1) = Hy(1) + V(1) (8.34)

where the kinetic term is given by the one-particle Schrodinger equation of
an electron in the Coulomb field of the nucleus.
The potential energy consists of a direct and exchange interaction with
the other electrons
V(1) = [J;(1) - K;(1)] (8.35)

where

su = [[amse(S)ue]sn )

KOu = [[mse (S)ue|uo e

Rather than solve the eigenvalue equations directly, we calculate the total
energy of the system given a set of wavefunctions and minimize this energy
by varying the parameters of the wavefunctions.

In a sufficiently strong magnetic field, these equations for the atomic
structure become approximately separable in cylindrical coordinates. With
this in mind, we take the trial wavefunctions to be of the form

$i(1) = Z(2)R(p, ¢)x(0). (8.38)
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Since we are looking for the ground state of these atoms, we take all the
electron spins antialigned with the field and the radial wavefunction to be
given by n = 0 Landau states with each electron occupying a different m
state. We obtain

¥i(1) = Zi(2) Rom, (p, $)X— 1 (0) (8.39)
where
ot = g (i) () 0 o9

and ag = \/hc/|e|B. We suppress the spin portion of the wavefunction
and use the natural length and energy units of the problem ag,e?/ag.
The total energy of the system is given by

E= Z @i(DIF@)[i(1)) - (8.41)

To expedite the calculation we can integrate over the known wavefunctions
in the p and ¢ coordinates. Specifically, we begin with the integral over ¢
in the potential energy terms

(i W)i(1)) = e2/ﬂldp1dZ1Zf(zl)RSmi (p1)Zi(z1) Rom, (p1) %

[ padondea; () i, (02 2 22) B, (02)
f(p1,p2,21 — 22) (8.42)
(i (DIK;(D)|i(1)) = 62/Pldpldzlzf(21)R3m,- (p1)Z;(21) Rom,; (p1) %
[ padondzs2; ) B () Zie2) R )
g(m; —mj, p1, p2, 21 — 22) (8.43)
where
f(PlaP2azl—Zz) = /d¢1/d¢2 X

1

VP + 0%+ (21 — 22)2 — 2p1p2 cos(¢1 — ¢2)
(8.44)
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g(m; —mj, p1,pa, 21 — 22) = /d¢1/d¢2 X
eimj—m:)(¢1—¢2)

VPE+ P34 (21 — 22)2 — 2p1p2 cos(dy — B2)
(8.45)

The expressions for the functions f and g may be simplified by the substi-
tution ¢1 — ¢ = 2(8 + 7/2) and the definition

4p1p2
k2 = 8.46
it 7 + (o1 =) (8.46)

resulting in

8
f(p1,p2,21 —22) = N CETA T (8.47)

/2 1
x/ e
0 V11— k2sin? 3

& -
B \/(Pl + p2)2 + (21 _ 2’2)2F (§7k> (848)
&

g(mi_mj,pl,p2,21_22) =

X
V(o1 + p2)? + (21 — 22)?
/7r/2 eQz’(mjfmi)(ﬁ"‘ﬂ'/Q)
0

V1 — k2sin? 8

8w
Vi1 +p2)? + (21 — 22)? "
/”/2 dﬂcos(?(mj —m;)(B + 7r/2))

where F (Z,k) is the complete Legendre elliptic integral of the first kind.
The imaginary portion of the integral for g must be zero since the Hamil-
tonian is hermitian (i.e. unitarity). This may be seen by expanding the
denominator in powers of sin? 3 and multiplying this series by i sin(2(m; —
m;)(8 + m/2)). The integral of this term is zero.

Numerical Recipes (Press et al. 1988) provides routines to efficiently
calculate F (g,k) = cel(v1—k2,1,1,1) (unfortunately, this routine is
absent from the latest edition). Furthermore, for |m; —m;| = 1, we can use

(8.49)

(8.50)
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the same routine to calculate g,

8
R 21
9(£1, p1,p2, 21 22)_\/(p1+p2)2 (Zl_z2)2ce1(\/1 k2,1,-1,1).
(8.51)

For |m; —m;| > 1, we must perform the integral numerically.

Furthermore, we can gain insight on both the functions f and g by
expanding them in the limit of large Az = |z; — 2;|.

L _1pi+ps  3p1+4pi0s +p)

Az 2 Az 8 Azd

_ 5 pf +9(pin3 + pin3) + pS
16 A7
35 p% +16 (o903 + pips) + 36p103 + p5

128 AZ9

1
+0(53)

9(0,p1,p2,21 —22) = [f(0,p1,p2,21 — 22) (8.53)

1pip2  3pip3 +pipo
2Az3 4 Az5

flp1,p2,21 — ) = (2m)?

(8.52)

9(£L,p1,p9,21 —22) = (2m)°

15 p1p5 + 333 + pip2
16 A7

_ 35p105 +6 (p103 + pp3) + pip2
32 A29

1
+0(527)

3pips 15 pips + pivs
8 AZ5 16 A7

(8.54)

9(£2,p1,p2,21 —22) = (2m)?

105 pip3 50103 + P10
64 A9

315 pip3 +5 (p108 + P9p3) + PiP3
128 Al

1
+0(55m)

(8.55)
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5 pip3 35 pipd + pins
+ — = (2n)?|= - =
9(£3,p1,p2,21 — 22) (2m) llﬁ A 33 A
1
+0{ Ao (8.56)
35 pips 1
g(i4aplap2721 - 22) = (27()2 ﬁ A1292 +0 A1l (857)
and in general
(Plpz)Am
g(EAmM, p1, p2,21 — 22) x AgZAmil (8.58)

to leading order in 1/Az.

In the limit of large Az, the integrals over the radial wavefunctions
may evaluated using these expansions. This calculation is speeded by the
observation that

n 2n mi| + |m2|+n
[ 2o, @m0 = (P )

(8.59)
which may be proven by using the normalization condition of the functions
Rom(p) and analytically continuing the factorial function with the Gamma
function. For Az < 10 we have numerically integrated the functions f and
g over the various pairs of Landau states.

After the integration over the radial and angular coordinates, the en-
ergy may now be written as expectation values of operators acting on the
Z(z) wavefunction. Since each electron is assumed to be in a particular
Landau m level, we can calculate an effective potential energy between the
electron and the nucleus by integrating over p, ¢. The potential is given by
Equation 8.13.

The calculational strategy is similar to the single electron case. The
quantum numbers v, m for each electron are chosen ahead of time, and the
wavefunction Z(z) is expanded as Equation 8.29 with each electron having
is own variable value of az. For each electron 4, the matrix

(Mi)re = (G| F (i) G1) (8.60)

is calculated.

The added complication is that the diagonalization of the matrices M;
must proceed iteratively. For the given values of az, the matrices are first
calculated assuming that the other electrons (j # i) have Ay = 1 for k = v;.
Then each electron’s matrix is diagonalized and the v;th eigenvector is used
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Table 8.4: The binding energy of He, HHe™ and HHe in an intense magnetic
field. The number in parenthesis gives the number of free parameters in
each variational model. The electrons occupy the most tightly bound states,
|0m0), e.g. [000), |0—10) and |0—20) for HHe. The values have been derived
numerically and the final column gives the numerically derived binding
energy of the ground state of H for comparison.

He (6) HHe* (5) HHe (7) | H (25)
1x10% | 32.47 35.75 4250 | 0.383
2x 102 | 40.98 4595 5425 | 11.64
5x102 | 54.95 63.07  73.36 | 15.28
1x10° | 67.85 79.24  90.89 | 18.57
2x10% | 83.00 98.55 1113 | 22.37
5x10% | 106.9 120.7 1431 | 28.25
1x10% | 1278 1575  168.0 | 33.37
2x 104 | 1516 189.7  193.1 | 39.11
5x10% | 187.6 239.6 47.70
1x10° | 2184 282.5 54.96

to calculate the interelectron potential for the next iteration. The matrices
converge after ~ 5 — 10 iterations. Next, the values of az for each electron
are varied to minimize the total energy of the configuration.

For brevity, we discuss the ground state energies and wavefunctions for
H,, He and HHe as a function of field strength for 8 > 1000. Since we
are interested in the ground states of these species we set v = 0 for all the
electrons and assign the electrons consecutive m quantum numbers begin-
ning with m = 0. Because none of the electrons have axial excitations, we
are interested in only the most negative eigenvalue of the electron matrices.
This eigenvalue is more efficiently determined by varying the coefficients
in Equation 8.29 directly than by diagonalizing the electron matrices iter-
atively.

Table 8.4 gives the binding energies of the most tightly bound states of
H,, He, HHe and H calculated numerically using the variational method.
The energies for H are within 1.1 % of the values quoted by Ruder et al. (1994)
for weakest field strength common between the two studies. For the stronger
fields, the agreement is even closer. For He the energies are within 2.5 %
of the values of Ruder et al. for the fields that overlap.

We also computed the binding energies of Hy and H™ and compared
the results with the values found by Lai, Salpeter & Shapiro (1992). We
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interpolated the Lai et al. results using a cubic spline with In 3 as the
independent variable. The binding energies for Hy were within 0.6 — 3%
of the Lai et al. results. The agreement for H~ was poorer ranging from
2 — 7%. The results for H and HJ (Table 8.2) agree to within 0.9% of the
Lai et al. values.

We compare these interpolated results with the results for the species
He, HHe and HHet to find that the reaction

H + He — HHe (8.61)

is exothermic over the range of field strengths considered. However, if there
is sufficient hydrogen present, the species HHe would quickly be consumed
by the exothermic reaction

H + HHe — He + H, (8.62)

for these field strengths, unless
H + HHe — HyHe (8.63)
is sufficiently exothermic (the binding energy and configuration of HoHe

is beyond the scope of this paper). The potential production channels for
HHe™,

He+H, — HHe' +H™, (8.64)
He+H — HHe' +H and (8.65)
He+H — HHe' +e~ (8.66)

are endothermic over the range of field strengths considered. We there-
fore conclude that at least for hydrogen and helium, atoms in an intense
magnetic field are far more cohesive than adhesive.

8.6 Conclusions

We have developed both an analytic and a convenient numerical technique
to accurately calculate the properties of simple atoms and molecules in an
intense magnetic field. The calculations presented here complement the
earlier work. We examine two compounds (HHe and HHe') in addition
to the species studied earlier which may form in the intensely magnetized
outer layers of a neutron star. Additionally, our technique finds both tightly
bound and excited states efficiently and accurately which is necessary to
calculate the radiative transfer of the neutron star atmosphere.
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The properties of the lowest density layers of a neutron star’s crust
determine the spectral characteristics of the radiation expected from the
star. One possibility is that linear chains of atoms form in the surface
layers (Ruderman 1974; Chen, Ruderman & Sutherland 1974; Flowers
et al. 1977; Miiller 1984; Neuhauser, Koonin & Langanke 1987; Lai, Salpeter
& Shapiro 1992), and the atmosphere condenses at finite density. We find
that the reactions between hydrogen and helium are unlikely to affect the
formation of hydrogen or helium chains unless the formation of hydrogen-
helium hybrid chains is favored.

If the envelope is truncated at sufficiently high density, the thermal iso-
lation can be substantially reduced (Hernquist 1985). Furthermore, the
composition of the outermost layers determines the spectra from the neu-
tron star (e.g. Pavlov et al. 1994; Pavlov et al. 1996; Zavlin, Pavlov &
Shibanov 1996; Rajagopal, Romani & Miller 1997). Without understanding
magnetized chemistry in neutron-star atmospheres, is difficult to interpret
observations of these objects.
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Chapter 9

Almost Analytic Models
of Ultramagnetized
Neutron Star Envelopes

SUMMARY

Recent ROSAT measurements show that the x-ray emission from isolated
neutron stars is modulated at the stellar rotation period. To interpret these
measurements, one needs precise calculations of the heat transfer through
the thin insulating envelopes of neutron stars. We present nearly analytic
models of the thermal structure of the envelopes of ultramagnetized neutron
stars. Specifically, we examine the limit in which only the ground Landau
level is filled. We use the models to estimate the amplitude of modulation
expected from non-uniformities in the surface temperatures of strongly mag-
netized neutron stars. In addition, we estimate cooling rates for stars with
fields B ~ 10*® — 10'® G which are relevant to models that invoke “magne-
tars” to account for soft y-ray emission from some repeating sources.

9.1 Introduction

Since the launch of the ROSAT satellite, our knowledge of isolated neutron
stars has expanded into new realms. Before ROSAT, neutron stars were
unique objects in astronomy. Although they had been observed over a
range of energies from radio to ultra-high-energy gamma rays, and had
been evoked to power a variety of astrophysical objects from pulsars to soft
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Table 9.1: Several pulsars with observed surface blackbody emission
Pulsar References
PSR J0437-4715 Becker & Triimper 1993
PSR 0630+18 (Geminga) Halpern & Holt 1992,
Halpern & Ruderman 1993,
Halpern & Wang 1997
PSR 0656+14 Finley, Ogelman & Kiziloglu 1992,
Anderson et al. 1993,
Greiveldinger et al. 1996,
Possenti, Mereghetti & Colpi 1996

PSR 0833-45 (Vela) Ogelman, Finley & Zuckerman 1993
PSR 1055-52 Ogelman & Finley 1993,

Greiveldinger et al. 1996
PSR 1929+10 Yancopoulos, Hamilton & Helfand 1994

X-ray repeaters and gamma-ray bursts, one could not argue unequivocally
that a single photon from the surface of a neutron star had ever been
detected.

For the first time, we have direct evidence for radiation from the sur-
faces of neutron stars. More than a dozen such sources have been detected
by ROSAT (e.g. Ogelman 1995), and more than ten have been fitted with
spectra. The spectra divide the objects into two classes: 1) objects with
hard spectra whose X-ray emission is best attributed to the magnetosphere,
and 2) neutron stars whose soft flux is well-described by a blackbody spec-
trum. Table 9.1 lists several of those that fall into the second group with
pertinent references.

Two component models characterize the X-ray spectra of these objects.
The soft component is typically a blackbody, and the hard component is
either a blackbody or power-law. Furthermore, the temperatures inferred
for the soft components agree with theoretical cooling curves at the charac-
teristic ages of the stars. If this interpretation is correct, the observations
provide a direct probe of the structure of cooling neutron stars. (Halpern
& Ruderman 1993 provide an alternative explanation for the soft emission
from Geminga).

Additionally, the observations show that the thermal radiation is mod-
ulated at the rotation period of the neutron stars. Although the time vari-
ation of the flux is small, with the count rates varying by 10%-30% from
their average values, this modulation is important because the thermal flux
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from a star emitting isotropically would be constant. A strong magnetic
can modulate the thermal flux through several physical effects:

1. Anisotropic heat conduction in the outer layers of the star (the enve-
lope) will result in non-uniform temperatures on the stellar surface,
with the magnetic poles being warmer than the equatorial regions.

2. Anisotropic radiative transfer in the atmosphere of the neutron star
will produce spectra whose shapes vary with the local inclination of
the field and the line of sight.

3. QED processes in the magnetosphere which depend on the local strength
of the field, such as photon splitting, can alter the spectrum.

4. The magnetosphere channels accreted particles onto the polar regions,
heating the stellar surface non-uniformly and mimicking the effects of
anisotropic heat conduction in the envelope.

All of these effects must be considered to compare model spectra with
the observations. As a first step, we focus on item (1), which is required
to understand effects (2) and (3). Although particle bombardment of the
surface is likely to contribute to the observed fluxes, as a first approximation
we assume that this effect contributes mainly to the harder components of
the observed spectra and has little effect on the soft blackbody components.

To a very good approximation, neutron stars are isothermal spheres
insulated from their environments by a thin outer layer which contains
negligible heat capacity and all of the temperature gradient. These proper-
ties make neutron stars almost unique among astrophysical objects which
tend to have a gradual temperature gradient from the surface to the cen-
ter. Instead, in this respect these exotic objects are more akin to everyday
objects such as buildings and ovens which effectively insulate an isothermal
interior with concentrated insulation at the interface with the exterior.

We proceed in the spirit of Gudmundsson, Pethick & Epstein (1982)
and concentrate our analysis on this thin region insulating the bulk of the
neutron star. The envelope is customarily defined to extend from zero
density to p ~ 10'° g/cm3, and its thickness (hg) is of the order of tens
of meters, very small compared to the radius of the star, R ~ 10 km. By
limiting the analysis, we focus on how various physical processes affect the
thermal structure of the envelope and the relationship between the core
temperature and the flux emitted at the surface. An alternative point
of view is to combine the envelope calculation with an estimate of the
cooling rate due to neutrinos and the total heat capacity of the neutron
star, yielding theoretical cooling curves (e.g. Tsuruta et al. 1972, Nomoto
& Tsuruta 1981, Glen & Sutherland 1980, Van Riper & Lamb 1981)
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Several authors have made much progress in understanding the prop-
erties of neutron star envelopes with and without magnetic fields. Gud-
mundsson, Pethick & Epstein (1982) numerically calculate the thermal
structure for unmagnetized envelopes, and Hernquist & Applegate (1984)
present analytic models for the B = 0 case. Tsuruta (1979), Glen & Suther-
land (1980), Van Riper & Lamb (1981) and Urpin & Yakovlev (1980) cal-
culate the luminosity observed at infinity as a function of the core tem-
perature for several magnetic field strengths less than 10'* G, including
the zero-field case. Hernquist (1985) calculates the thermal structure of
envelopes for B < 10'* G for transport along the field, using the electron
conductivities of Hernquist (1984) which account for the quantization of
electron energies in the magnetic field in a relativistic framework. We will
use these conductivities in the present work; therefore, Hernquist (1985)
provides a natural benchmark.

Van Riper (1988) builds upon the Hernquist (1985) results by explor-
ing various assumptions concerning the properties of the envelope at low
densities and calculating profiles for many field strengths (B < 10'* G)
and core temperatures. Again, these calculations are limited to conduction
along the field. Schaaf (1990a), using the electron conductivities calculated
in Schaaf (1988), calculates the thermal structure in two dimensions for
B < 10" G. Above a field strength of 10'? G, the calculations are not
considered reliable. Finally, Shibanov et al. (1995) present the temperature
distribution as a function of magnetic colatitude for B = 10'2 G from a
numerical solution to the two-dimensional thermal structure equation in a
plane-parallel approximation.

The current work complements the previous ones by extending the re-
sults to stronger field strengths (10'* G < B < 10'% G) in a semi-analytical
fashion. We apply the approach of Hernquist & Applegate (1984) in the
limit of a strongly magnetized envelope, and then justify and use the plane-
parallel approximation to solve the two-dimensional structure equation. We
derive separable thermal structure equations in the high and low temper-
ature limits for both liquid and solid material. We calculate the thermal
structure in terms of simple (although analytically intractable) integrals.

The plane-parallel approximation has the second important advantage
that the detailed field configuration separates from the thermal structure
problem. Assuming that is is correct, we can synthesize the results for any
field distribution B(6, ¢) as long as B is not too inhomogeneous on the scale
of the envelope thickness.

We find that the emission from a given surface element is a simple
function of the location of the element. Using this functional form, we de-
rive light curves and time-dependent spectra including general relativistic
effects. Although we closely follow the formalism of Page (1995), we cal-
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culate the two-dimensional thermal structure of the envelope and present
results for several field strengths and fluxes. We internally verify and justify
the geometric simplification used to translate our results into observables.

9.2 Preliminaries

In extremely intense magnetic fields, the Landau energy (fiwg) of an elec-
tron will typically exceed its thermal energy. In these strong fields, the
quantization of the electron energy determines the structure of the electron
phase space and must be taken into account in calculating the thermody-
namics of the electron gas.

To quantify the strength of the magnetic field we define

g=Twn _ Blel o (9.1)

mec2  m2c3

Here 8 = 1 corresponds to a field of 4.414 x 10'® Gauss and wp is the
non-relativistic electron gyrofrequency.

The chemical potential and temperature of the electrons can be ex-
pressed similarly as

(= (9.2)
Throughout this paper we use relativistic expressions for the energy and
chemical potential, including the electron rest mass.

In an extremely strong magnetic field, the quantization of electron en-
ergies into Landau levels restricts the phase space of the otherwise free
electron gas (Hernquist 1985), and its thermodynamic properties are given
by

5 and 7 = 5
meC meC

_ B[z N (1

e = 55 dyf(v)y Y - Xg : (9.3)

n=0 e

p - 2 nmzaxga (9.4)

e 27}_2 1 n“n Xa )

op _ B "ax My 1

o = o) oy (5 ;>’ ©3

o _ B 0f 7=C'S gn (m_L)

ar 2% ), d 6’)/ T ;} an \Ye x,%/7 (96)
_ _B [, 0fy—CRY ko
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where
_ -1
Nmax = 53 (9.8)
a2 = ¥ -2mB-1, (9.9)
1
10 = e =o/m (9.10)
A
Y-e = Z (9].].)

and g, = 2 — dpp is the degeneracy of the Landau level, X, is the electron
Compton wavelength, m,, is the atomic mass unit, and Z and A are the
mean atomic number and mean atomic mass of the material. For partially
ionized matter, Y, is given by the product of Z/A and the ionized fraction.

In the degenerate limit, electron conduction transfers energy through
the envelope. For a liquid, electron-ion collisions hamper this flow. In the
solid state, electron-phonon collisions provide the resistance. Additionally,
heat flux is greatly restricted perpendicular to the magnetic field lines;
consequently, we have an anisotropic thermal conductivity (k) tensor. In
the absence of a electric current, we obtain (Hernquist 1984)

k=v-=TX- ()" - (9.12)

where 7, A and o are the thermal conductivity, thermoelectric and electrical
conductivity tensors respectively.
If we take the field to point along the z direction locally,

2
Oz 3 [~ of e
)\zz = T 55 a. —|€|k(7—C)/T ¢(V7ﬁ)d’y
Yzz 2m? /1 87 km602 ('7 - C)2/T

< (% L ) (9.13)

hXe Oom
Oyy 1 =8 e2
S | = g [ | el Qfr | @it
Tyy ! 7 kmec® (v —¢)* /7
h
X (Jon) (9.14)

where v = /3, n; is the number density of ions (n./Z), o is the scattering
cross section and ¢ and () are perturbations to the distribution function
and the diagonal component of the density matrix f,s(p.,yn), summed
over Landau level n and spin s (Hernquist 1984).
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9.3 The Low-Temperature, Strong-Field Regime

We are specifically interested in the low temperature limit (7 <« ¢ — 1)
and the regime in which only one Landau level is filled (( < /28 + 1).
For neutron stars with 8 > 1, this limit applies to the regions that most
effectively insulate the isothermal core of the star.

In this regime we obtain,

ne = b \/@——1(%) (9.15)

ﬁ e

1 1 k
K = GT—5HGH) (j—o) (9.16)
f = g (M), (9.17

Also, Yakovlev (1984) has calculated the function ¢ in this limit, and we
apply the formalism of Hernquist (1984) to calculate the function ) ana-
lytically for electron-ion and electron-phonon scattering.

9.3.1 Electron-ion Scattering

Electron-ion scattering dominates the resistance to electron conduction in
the liquefied regions of the neutron-star envelope. The scattering cross
section is 7202
TZ%0" 2
agpg = TXC (918)

where o = 1/137 is the fine-structure constant and

-1
6430 = gu |t et e a)| . ©19)

Quitrid) = = [Blas+ D) + 208) explv + 0 Br (v + an)

0
+8(aq + 1)y* e E; (aq) — B(y* + 1)} (9.20)
where
w = 2% (9.21)
5 '

a2 1/3
ag = 0.15 (%) , (9.22)
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and E, () is an exponential integral which is easily calculated and is defined
by

(e ] efzt
E,(z) = ——dt, >0, n=0,1,... (9.23)
TR A

9.3.2 Electron-phonon Scattering

In the solid state, electrons scatter off of phonons which impedes the flow of
heat. The scattering off of impurities may also be important at even lower
temperatures (Yakovlev & Urpin 1980). As we are studying envelopes with
effective temperatures ~ 10% K, we neglect this effect.

The results for electron-phonon scattering are relatively simple. We

obtain
v = M;Q%(m;eg)xf, (9.24)
b)) = gulEiw] (925)
Qulrf) = B+ —2"Eiw) (9.26)

and we take u_» ~ 13 (Yakovlev & Urpin 1980, Potekhin & Yakovlev 1996)
for a body-centered cubic lattice.

The expressions for ¢ and () presented in this and the previous sub-
section are valid for any temperature for v < /238 + 1 (or equivalently
w < 4).

9.3.3 Degenerate Structure Equations

If we assume that the pressure is supplied by the electrons alone, the general
relativistic equations of thermal structure in the plane-parallel approxima-
tion assume the simple form

dT FY 1 1

£ - ffe - 2
dp gs My k1 — FSe/gspk (9.27)
du My, F S,

= = Hg{1-== 2
dz Ye g ( Js p”) (6.28)

where we have neglected the thickness of the envelope (hg ~ 100 m) relative
to the stellar radius (R). Here F' and g, are the flux and the acceleration
of gravity as measured at the surface, respectively. In the absence of a
magnetic field, this plane-parallel approximation introduces errors of the
order R.hp/R? ~ 0.6% where R, = 2GM/c?> (Gudmundsson, Pethick &
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Epstein 1982). To understand the potential errors of this plane-parallel
treatment in the presence of a magnetic field, we compare the results of
Shibanov et al. (1995) with those of Schaaf (1990a). Although Shibanov
et al. (1995) use a one-dimensional treatment, their results agree with those
of two-dimensional treatment by Schaaf (1990a) for several surface tempera-
tures and a magnetic field of 10'? G. In stronger magnetic fields, conduction
perpendicular to the magnetic field is even less important, and we expect
the one-dimensional treatment to be even more accurate.

To estimate the errors in using the plane-parallel treatment in the pres-
ence of the magnetic field, we examine the thermal structure equation in
two dimensions (Schaaf 1990a)

V-F — |r°kiie — + K12~ (9.29)

2 o or o0

1 0 . —ASBT Ko2 oT o
~ rsin0 90 [‘9 (“ ot 7%)] =0

e 9 [ s 0T aT]

where 6 is an angle along the surface of star, specifically the magnetic
colatitude,

R
e M =4 /1- f, (9.30)
and the k;; are the components of the thermal conduction tensor, where
1 denotes the radial direction and 2 denotes the tangential direction. The
components of k are found by rotating the tensor calculated in the previous
section so that the z-direction coincides with the radial direction here. This

gives

K11 = Kyysin® ¢ + K, cos® ¢, (9.31)
Koz = KyyCOS® 1) + K, sin® ¢, (9.32)
Ki2 = Kkon = (Kyy — Kzz)sing cosyp, (9.33)

where 1 is the angle between the local field direction and the radial direc-
tion. For a uniformly magnetized neutron star ¢ = 6; for a dipole field,
cot 1) = 2cot @ (Greenstein & Hartke 1983), or more conveniently

4cos? 0

2 _
cos™ 9 = 3cos20+1°

(9.34)

If we assume that the components of the thermal conduction matrix (k)
are of the same order and take the maximum temperature gradient to be
T.—Teg ~ T, radially over the thickness of the envelope, hg, or tangentially
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over one radian, we obtain

g—:g ~T. K e—“rg—f ~ e_ASRZ—; ~ 10°T, (9.35)
where T is the core temperature. We find that neglecting derivatives with
respect to angle does not dramatically increase the error relative to the
unmagnetized plane-parallel case.

However, this argument does not apply for 8 close to 7/2 (i.e. where
the magnetic field lines are parallel to the surface for a uniform or dipole
field). Here,

K22 = Kzz > K11 = Kyy. (9.36)

If we reexamine the error analysis for ¢ = 7/2 we find that relevant quan-
tities to compare are

o*T 5 _op 0T
Kn2 5 py and kiir’e 5 (9.37)
The tangential transport will exceed the radial transport if
h2
cos?ep < s B _ vy (9.38)

R Kk,

Comparing these values we find that if x., > 10*,,, the one-dimensional
treatment will break down near ¢ = 7/2; otherwise, the plane-parallel
treatment is adequate even at ¢ = 7/2.

For regions where the magnetic field lines are not nearly parallel to the
surface, the plane-parallel approximation works well; consequently even for
an arbitrary field geometry, because the envelope is thin, we ignore 9/00
terms in the structure equation compared to r6/6r terms and focus on
radial heat flow. With these assumptions, we have (Schaaf 1990a)

K= Kil = Ky, COS2 1) + Kyy sin? 1. (9.39)

In the low-temperature limit, we obtain the dimensionless equation

dr F x*\/ck1
a7 _ [y & A k2 4
v (Yemugs : ) (m) (9.40)

where the dimensionless flux is given by

F ox’ Zog Tk
(Ye : ) =7.83 x 1073228 _efté (9.41)
Mmygs C Ase 9gs,14
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where ZQG = Z/26 A56 = A/56 Teﬁ‘ﬁ = eﬁ‘/].o K and 9s,14 = 95/1014
cm/s?. Teg is the effective blackbody temperature of the neutron star pho-
tosphere again as measured at the surface, which we take to be located at
an optical depth of 2/3.

For Equation 9.40 to be separable for an arbitrary geometry, k., and
Kyy must depend on 7 in the same fashion. For electron-ion scattering
this is the case, so we can hope to find a simple analytic solution to the
structure equation. Unfortunately, since the cross-section for electrons to
scatter off of phonons depends explicitly on temperature (Equation 9.24),
in the solid state the structure equation is separable only where the field is
either purely radial or tangential.

In the liquid state, we obtain the following structure equation,

dr F Xez 7 5% ¢ei(C;B)
Td—C = (Yemugs p )[coszwgz—azi,—@_l

.2 2 -1
4 Y Za '(C;ﬂ)\/C2—1] (9.42)

127 B ¢

In the solid state for electron-phonon scattering, we obtain

-1

dr (n F X—) [1 Bl ﬁ)] p=0  (9.43)

d¢ Mmygs C 3au_s
2dT _ F Xez 1 au_ 9 —1 o
! d_C B (Y(-?T)’Lugs c > [12 3 Qep(C ﬂ)] , Y= 5 (9.44)

9.4 The High Temperature Regime

In the nondegenerate regime we assume that most of the heat is transported
by photons and that free-free absorption provides the opacity. We take the
unmagnetized thermal conductivity to be of the Kramer’s form (Silant’ev
& Yakovlev 1980),

T13/2
Ky = ko (9.45)
where

1 7/2 3/2 42
Ko = ¢ ock m2m (9.46)

2.947 ™ 2T eSh Z3

1 196.5 A2

60 96.5 g (9.47)

73 "™2259 73 cd K2
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¢y = 316.8 and o is the Stefan-Boltzmann constant. The factor of 2.947
scales the results of Silant’ev & Yakovlev (1980) to agree with the results
of Cox & Giuli (1968) (for discussion see Hernquist 1985).

Electron-scattering may also play a role in the nondegenerate regime.
To simplify the calculation, we neglect its contribution and verify that it is
indeed negligible. We take it to be given by (Silant’ev & Yakovlev 1980)

(ry _ 160 my T3
FgZo = 3. Y., (9.48)

where o7 is the Thompson cross section.

To determine which process dominates the heat transport, we take the
ratio of the opacities for the two mechanisms (e.g. Van Riper 1988). The
opacity is defined by

_ 160713
The ratio of these contributions is given by
%53120 n(;;)o 16721 Z2 eSh? p
- = = 2.947 — 373 )3 (9.50)
KpZo Kp=o 3t A myorck’?md? T
Z2
= 2.28x 103226 P20 (9.51)

Asg T67/2

where pg = p/1 g cm™3 In the next subsection, we find that this ratio is
large throughout the non-degenerate portion of the envelope.

We parameterize the effects of the magnetic field by the anisotropy
factor for free-free scattering, which dominates the opacity through the
nondegenerate portion of the envelope (Pavlov & Yakovlev 1977, Silant’ev
& Yakovlev 1980),

K = Kunmagnetized’]f f (b,9) (9.52)

(Silant’ev and Yakovlev used ¢ where we use 7). The function 7 consists of
parallel and perpendicular contributions

ns5 (b, 1) = cos® Ymy ) (b) + sin® ¢hnyy, 1 (b), (9.53)

where b = g/7.

In weak and intermediate fields, the auxiliary functions are tabulated
by Silant’ev & Yakovlev (1980).

For b > 7, the functions are given by (Pavlov & Yakovlev 1977)

a3/ &
€423 g PO

1

i (b) = gqbzm . (9.54)
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Figure 9.1: The left panel depicts the function 7y; i.e. the ratio of the
magnetized to the unmagnetized free-free conductivity as a function of b =
B/ for parallel (solid line) and perpendicular (dashed line) transport. The
right panel traces the logarithmic derivative of nys. We see that for large b
(strong magnetic fields), nss is well approximated by a power law.
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with ¢ = 0.0214 (Silant’ev & Yakovlev 1980). The parameter £ is given by

nes,L(b) = ngﬂﬁ lzg -5+3 ] : (9.55)

£= % [ln <éb) — VEuler — 1] (9.56)

with YEuler = 0.577216, and the function,

arctan (\/153) &1
F¢) = = (9.57)
m(EvE) e

We use these strong field results to extrapolate beyond the tabulated values
in Silant’ev & Yakovlev (1980); é.e. for b > 1000. For b < 1000 we use the
results of Silant’ev & Yakovlev (1980). The functions ns | and 75,1 and
their logarithmic derivatives are shown in Figure 9.1.
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9.4.1 Non-degenerate Structure Equation

We follow the method of Hernquist & Applegate (1984), but we do not
require that the conductivity be a power law in p and T'.
In the non-degenerate regime, the thermal structure equation of the
envelope is
dr _F 1
ap gs PK
and we consider an unmagnetized conductivity which is a power law as
Equation 9.45

(9.58)

Td
K= /-cop—a. (9.59)

Even in an intense magnetic field, in the nondegenerate regime, the pressure
is given by the ideal gas law (Blandford & Hernquist 1982)

Y,
P =" pkT. 9.60
P (9.60)
We combine Equations 9.58-9.60 with Equations 9.45 and 9.52, yielding
T _F 1 ot po-t
R i) e — (9.61)
dp gs Ko \ Yek nff(ba ¢)Ta+6 !

As for the structure equations in the degenerate limit, this equation is sep-
arable, yielding p(T'). Because 7y; depends on T' through the argument
b, the relation between T and P need not be a power law as in the un-
magnetized case. In the limit that nyy = 1, the result of Hernquist &
Applegate (1984) obtains.

More generally, if we take, 7777 to be a power law oc b=2 (e.g. Tsuruta
et al. 1972) which is approximately true for b — oo as can be seen in Fig-
ure 9.1, we can immediately use the results of Hernquist & Applegate (1984)
to obtain that the conductivity is constant through the nondegenerate en-
velope:

a+d—-2FY.k

= — 9.62
a gs My ( )

erg

4
7.07 x 1013@@

—_— 9.63
Ase gs,14 Kcm s (9.63)

for « =2 and § = 6.5 as in Equation 9.45. If we equate this result with our
assumed conductivity and solve for T, we find that the solution follows

1/(5-2) 49
T= ( r ) po/ 6= = 106K (L) (9.64)
agko PTs
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where

2 [ pBm.c? 2 1
_ = 9.65
s 3q ( k ) In bTypical ( )

/6 3/2 — — 1/2
AN 7T 0V, (9.66)
vV In bTypical

and brypical is a typical value of 8/7 in the envelope, brypical & 6x10%3. One
should note that for free-free scattering in the weak-field limit, T oc p*/13.

With Equation 9.64, we can calculate the density at the onset of degen-
eracy. We will assume that at the onset of degeneracy the electron density

is given by Equation 9.15 and that 7 ~ { — 1. This yields

prs = 71.3gcm®

pxp/p = 3:92 % 10° g cm 3 Bl brypicar) /T ASY Zaog T 91T, (9.67)

Also, by combining Equation 9.64 with Equation 9.51, we find that the
ratio of opacities along the solution is given by

) 5 14/9
820 _ 174 x 10%p, */* <7> AN 255 T g

%ET:)O v/ In brypical
(9.68)

Since this ratio increases with decreasing density, we only need to estimate
it at the maximum density for the solution, i.e. the density at the onset of
degeneracy

= 1.36 x 10*A(In brypical) "/ A% Za " Ts! 9y (9.69)

For B = 10 G this ratio is greater than one for Tog < 5.9 x 10 K, which is
larger than the effective temperatures considered here. Furthermore, this
is a conservative estimate of this ratio because generally we cut off the
nondegenerate solution where degenerate electrons begin to dominate the
heat conduction. In unmagnetized envelopes this occurs where the gas is
mildly degenerate (Hernquist & Applegate 1984). We find that this is also
the case for strongly magnetized envelopes.

9.5 Calculations

9.5.1 Strategy

We have found that the heat transfer equation is not solvable analytically,
but it is separable in several cases. For the liquid and degenerate region
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of the envelope the solution may be calculated once for each field strength
and geometry, and scaled to reflect the magnitude of the heat flux and
shifted to fit the temperature at the low density edge of the region. We
can apply this same strategy in the solid state only for the case of a purely
radial or azimuthal field. Otherwise, for the solid region, the temperature
as a function of chemical potential will depend on the flux and boundary
conditions in a more complicated way; consequently, the solution must be
recalculated for each value of the flux.

The general strategy is as follows:

1. Use the radiative zero solution for the given flux to determine the tem-
perature and density at which degenerate electrons begin to dominate
the heat conduction.

2. Determine the phase of the material at this depth in the envelope.

3. Calculate the appropriate (liquid or solid) solution for the boundary
conditions determined by the radiative zero solution through the non-
degenerate portion of the envelope.

4. Determine if the solution crosses a phase transition. We define the
melting curve as follows (Slattery, Doolen & DeWitt 1980)

r

(Ze)> 753 (2 \'* , 1/6

= - -1 =T, ~171 9.70
rikT T 37rﬂ (€ ) (9.70)
where the second equality obtains in the degenerate limit when only
one Landau level is filled. We have defined, r;, the radius of the
Wigner-Seitz cell, by n;4rr3 /3 = 1 where n; is the number density of
ions.

5. With the temperature and density at the phase change, continue the
solution until the lowest Landau level is completely filled (i.e. { =
V23 +1). We will denote the temperature and density at this point
by Tmax and pmax, respectively.

From the generic shape of the solutions (Equation 9.64), the envelope is
solid at the lowest densities regardless of field strength (as long as 8> 1)
and flux. The envelope may pass through a phase change in the nondegen-
erate regime. In the degenerate regime, for parallel transport, the envelope
tends to be solid at the highest densities, while for perpendicular transport,
it tends to be liquid. Therefore, in general, in the degenerate envelope, the
matter may pass through a single phase change either liquid-to-solid for
parallel transport or solid-to-liquid for perpendicular transport.
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Figure 9.2: Thermal structure of a strongly magnetized neutron star en-
velope for a radial field. The left panel traces the temperature-density
relation with B = 10',10'5,10'® G and effective surface temperature of
10% K. The right panel traces the conductivity through the envelope. The
constant conductivity solution appropriate for a purely power-law conduc-
tivity law works well through the nondegenerate regime. In the left panel,
liquid phase exists above the dashed curve, and solid phase exists below.

9.5.2 Results for the separable structure equations

As described earlier, in the low-temperature limit when only one Landau
level is filled the structure equation is simple and may be integrated for
a given field strength and geometry and the boundary conditions and the
dependence on the flux may be satisfied after the numerical solution is
obtained.

Given these numerical results, it is straightforward to calculate the core
temperature for a given surface temperature and flux. However, before
fixing the boundary conditions, we can note several general features of the
results. First, for transport along the magnetic field, the envelope becomes
nearly isothermal at ( — 1 ~ 0.1 regardless of the magnetic field strength.
However, for transport perpendicular to the field, the temperature rises
steadily throughout the range of applicability of this formalism.

Parallel Transport In Figure 9.2 we present results for the degenerate
and non-degenerate regime for several magnetic fields with an effective sur-
face temperature of 10° K. In the nondegenerate regime the temperature
solution follows the power-law given in Equation 9.64 and the conductivity
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is nearly constant. In the degenerate regime, the conductivity increases
dramatically and the temperature remains nearly constant. For the solu-
tion with B = 10'5 G, the discontinuity in the conductivity at the phase
transition is apparent. The results for 10'* G qualitatively agree with the
results of Hernquist (1985) for this field strength. Quantitatively however,
we find that the conductivity in the nondegenerate regime is thirty per-
cent lower than the earlier result of 10'* erg/(K cm s) and is given by
Equation 9.63. As the magnetic field strength increases, we find that the
core temperature (or here the temperature at which the first Landau level
is filled) decreases. This effect results from the increased conductivity in
the nondegenerate regime where & is approximately proportional to 32 and
the degenerate regime where the quantization of the electron phase space
increases the conductivity above the zero-field values.

We take advantage of the simplicity of this analytic technique when
calculating the thermal structure for hotter and cooler surface tempera-
tures. We do not need to reintegrate the structure equations themselves.
All that is required is to recalculate the boundary conditions at the non-
degenerate-degenerate interface and the liquid-solid phase transition. Some
representative results are shown in Figure 9.3. Again we find qualitative
agreement with Hernquist (1985). In the nondegenerate regime, the in-
creased or decreased flux mimics the effect of changing the field strength
depicted in Figure 9.2.

We compare the various results by determining the temperature at the
following densities: p = 1.5 x 107, 4.7 x 108 and 1.5 x 101 g/cm3. These
are the densities at which the lowest Landau level fills for field strengths
of 104, 10'® and 10'® G. Moreover, since the matter is nearly isothermal
at higher densities, these temperatures are close to the core temperature,
at least for parallel transport. By fitting the results of the calculations, we
find that at the lowest density:

£\ 035
T(p=1.5x107g/cm®) oc g2 (g—) (9.71)
and at both the higher densities
0.43
T(p = 4.7 x 10%g/cm® 1.5 x 10'°g/cm®) 47016 <g£> . (9.72)

Figure 9.4 compares the numerical results with the best-fit power-law re-
lations.

Perpendicular Transport Modeling the transition between photon and
electron heat transport is qualitatively different for transport perpendicu-
lar to the field lines. In the parallel case, the conductivity from electrons
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Figure 9.3: Same as Figure 9.2 but for different effective temperatures.
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Figure 9.4: The left panel depicts the temperature-flux relation for sev-
eral field strengths and densities. F/gs is given in units of o(106K)*/10'4
cm/s?. The right panel depicts the temperature-magnetic-field relation.
The symbols show the calculated data points and the lines are the best-fit
power law functions to the data.

typically increases rapidly with density, and the transition from photon to
electron-dominated heat transport is abrupt. For perpendicular transport,
the function @) decreases with energy, and therefore the conductivity de-
creases with density for fixed temperature. In this case the transition is
more subtle. Fortunately, the solution does not depend strongly on how
this transition is treated, so we choose to employ ( — 1 > 7 to delineate
the region where electron conduction dominates. The conductivity is not
continuous across this transition as is apparent in Figure 9.5.

We varied the definition of the non-degenerate-degenerate interface and
found that it had little effect on the Ti,,x — Tes relation. Figure 9.6 shows
how the solution changes if we move the interface to a factor of ten higher
or lower temperature (i.e. ( —1 > 107 and ( — 1 > 7/10). Although near
the interface the solutions differ dramatically, at higher densities the choice
has little effect. The boundary condition at the transition is unimportant
for perpendicular transport, because the temperature rises quickly with
density, and the solution quickly “forgets” the boundary conditions, in a
manner analogous to the convergence of the radiative zero solution to the
true solution in stellar atmospheres (e.g. Schwarzschild 1965). This is in
contrast to the case where ¢ # /2 where the material quickly becomes
isothermal in the degenerate regime.
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Figure 9.6: The dependence of the envelope solution for transport perpen-
dicular to the magnetic field upon the definition of the non-degenerate-
degenerate interface. We have calculated the location of the interface for
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Table 9.2: Results of the Two Dimensional Calculations
Field Strength [C] Ten(® = 0) [K]  Toan(C = V2B F D] [K]

10 1.07 x 10° 1.12 x 108
1018 3.16 x 108 4.79 x 108
106 5.06 x 106 8.13 x 108

We find that for a given effective temperature the core temperature is
much higher where the heat must travel perpendicularly to the field lines.
Furthermore, we find that for stronger field strengths the effect is more
pronounced.

Effective Temperature Distributions To find the effective tempera-
ture as a function of angle with respect to the magnetic field we vary the
effective temperature as a function of angle until the temperature where
the first Landau level fills is constant for the various angles. Unfortunately,
where the magnetic field is neither radial or tangential we only have so-
lutions in the non-degenerate and liquid degenerate regimes. Therefore,
for acute angles we must select fluxes such that the degenerate solution is
entirely in the liquid regime. For the more strongly magnetized envelopes
we can follow the solution to higher densities; consequently, we must use
larger effective temperatures for the stronger magnetic fields. Table 9.2
summarizes the parameters for the calculations.

Figure 9.7 depicts the results for B = 10'* and 10'® G. For all but
the perpendicular case, the envelope has become nearly isothermal by the
density where the first Landau level fills.

Figure 9.8 shows the flux as a function of angle for all of the two-
dimensional calculations. The agreement between the flux distribution and
a simple cos? 1) law is striking. Greenstein & Hartke (1983) have argued that
if the conductivity is constant through the envelope, the flux will follow a
distribution of the form A cos? )+ Bsin?¢. Although in the nondegenerate
regime the conductivity along a T'(p) solution is nearly constant, in the
degenerate regime it varies by several orders of magnitude. Furthermore,
the nondegenerate layers do not throttle the heat flux; if they did, one would
expect little variability, as the conductivity parallel and perpendicular to
the field are nearly equal in the strong field limit (Figure 9.1).

We look to the degenerate structure equation for the liquid state to
explain the remarkable agreement with a cos?1) distribution. From exam-
ination of Equation 9.42, we see that if the conductivity transverse to the
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Figure 9.7: The left panel shows the temperature structure of the envelope
as a function of density for B = 10'* G and Teg = 1.07 x 10% K at ¢ = 0.
From top to bottom, the results are for ¢ = 0°,30°,60°,85°,90° where
1 is the angle between the magnetic field and the radial direction. The
right panel depicts the temperature structure for B = 10'® G and Teg =
5.06 x 108 K at ¢ = 0. The solutions are constrained to have the same
temperature at the density where the first Landau level fills (denoted by
the bold circle). In both panels, liquid phase exists above the dashed curve,
and solid phase exists below.
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field is neglected, we can make the replacement
F — Fcos® (9.73)

and recover the structure equation for » = 0. We determine where this
approximation is valid by comparing the transverse and parallel components
of the conductivity tensor

Kyy,ei _ Z%a* (C2 _ 1)Qei(c;/3) — 892 x 101! Zélﬁ pg Qei(C; 3) )
Kzz,ei 4m2 33 Pei (C; ﬂ) AEGB?4 ¢ei(c; ﬁ)
(9.74)

At first glance, it appears that the transverse conductivity is negligible
throughout the degenerate regime. However, the functions @Q.; and ¢g;
complicate the discussion. Specifically, ¢; — 0 and Q¢ — o0 as ( — 1;
therefore, transverse conduction is likely to be important in the nonrela-
tivistic portion of the degenerate envelope. Figure 9.7 shows that this is
indeed the case. For B = 10'@, the solutions for 1 < 7/2 are nearly
identical for p > 108 g/cm? or ¢ > 1.1. As ¢ approaches unity, the ratio
of the conductivities increases without bound, the transverse conductivity
may no longer be neglected, and the runs of temperature with density begin
to diverge.

Empirically, we find that in the region of the envelope which most effec-
tively throttles the flux, the transverse conductivity may be neglected for
1 < m/2 without introducing significant error.

9.5.3 Observed Flux Distribution

We follow the technique outlined by Page (1995) to calculate the observed
fluxes. However, unlike Page (1995) we evaluate the double integrals over
the visible portion of the neutron star surface directly. We use the cos? 1)
rule to calculate the photon distribution function at the surface, and so
we do not define a grid of precalculated distribution functions as does
Page (1995).

As a first approximation, we focus on the variation of the observed
bolometric flux with the angle ¢ of the line of sight with the magnetic
dipole axis. This angle is a function of the phase angle (), the inclination
of the dipole to the rotation axis (@) and the line of sight to the rotation
axis ()

cosp = cos( cosa + sin { sin a cosy (9.75)

(Greenstein & Hartke 1983). For simplicity, in the discussion that follows
we will take @ = ( = 7/2; therefore ¢ = v and we refer to ¢ = 0,7 as
on-phase and ¢ = 7/2,37/2 as off-phase.
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We repeat the calculation for several values of the stellar radius (with
fixed mass) to determine the effects of general relativity on the light curves:
gravitational redshift and the deflection of null geodesics (self-lensing, or
more concisely “lensing”).

To quantify the effect of gravitational lensing on the light curves of
magnetized neutron stars, we calculate the mean value of the bolometric
flux emitted by the surface over the visible region of the star. We assume
that the flux at a given location on the surface is proportional to cos? 1)
where ¢ is the angle between the radial direction and the magnetic field.

For clarity, we treat the gravitational redshift separately. Figure 9.9
depicts the ratio of the mean value of the flux over the visible portion of
the star to the flux that would be emitted if the magnetic field were normal
to the surface throughout (i.e. an isotropic temperature distribution).

In the limit of infinite radius, i.e. if lensing is unimportant, we find that
for a uniform field

flo=0)=3f@=0 and flo=n/2) = LfW=0).  (976)

For a dipole field, the calculation is slightly more complicated. First, we
used Equation 9.34 to determine the angle of the field with respect to the
radial direction. Secondly from equations 9.71 and 9.72, we find that the
emergent flux is a function of the field strength. For a dipole configuration,
the magnitude of the field varies as

B oxV3cos?6+1 (9.77)

along the surface of the star. Since we are most interested in fixing the
internal temperature at high densities we assume that the flux is propor-
tional to B%* from Equation 9.72 which reduces the flux for 6§ ~ 7 /2 further
beyond the cos? ¢ rule. We obtain

flp=0)=0.663f(» =0) and f(p = 7/2) =0.393f(x» = 0).  (9.78)

If we did not include the effect that the flux is a function of field strength
as well as orientation we would have obtained 0.717 and 0.444 for the above
values.

We find that the mean flux is greater for the dipole configuration than
for a uniform field for all viewing angles if R/Rs; < 5, and that the varia-
tion in the light curve is generally smaller. We have taken Mng = 1.4Mg,
yielding a Schwarzschild radius, Rs, of 4.125 km. The theoretical predic-
tions for the radius of a 1.4Mg neutron star range from 6.5 km to 14 km
(Thorsson, Prakash & Lattimer 1994; Pandharipande 1971; Wiringa, Fiks
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Figure 9.9: The average of the bolometric flux over the visible portion of
the neutron star for ¢ = 0,7/2. The upper pair is for a dipole, and the
lower is a uniform field configuration.
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& Fabrocini 1988), depending on the details of the equation of star at su-
pernuclear densities.

As Page (1995) found, lensing dramatically reduces the variation of the
observed flux with phase by making more than half the surface visible at
any time. Interestingly, for the range of radii 7.248 — 8.853 km, we find
that the flux is greater when the magnetic poles are located perpendicular
to the line of sight. For this range of radii over 90% of the surface is visible.
Emission from both of the hotspots reaches the observer leading to a larger
flux. For radii less than 7.248 km the entire surface is visible and again the
peaks are on phase. Page (1995) found a similar effect for the same range
of radii.

The emitted spectra from the visible portion of the neutron-star surface
is the sum of blackbody spectra of various temperatures. To determine the
emitted spectra, we calculate the distribution of blackbody temperatures
on the surface; i.e. we estimate the distribution function df/dTeg. With
this distribution function, it is straightforward to calculate the emergent
spectrum averaged over the visible portion of the surface as

7= ® df 1 h w3
Y Jo  dTer 0T 4m%c® exp(hw/kT) — 1

dTeg. (9.79)

The factor of 0T converts the flux to an effective area of emission (A).
The calculation of df/dTeq is numerically more tractable than dA/dTes
and allows us to account for the total energy emitted more reliably.

We calculate df /dTeg in similar fashion to f. To expedite the calcula-
tion, we note that given the cos? 1) rule the neutron star surface has a lim-
ited range of effective temperatures, specifically between 0 and Teg (1) = 0).
Consequently we define

= Terr

LT Taw=0) (9.80)
df  df B

g = Tl =) (9.81)

For observations on-phase (p = 0) and without lensing (R — 00), the flux-
weighted temperature distribution can be calculated directly if the envelope
is uniformly magnetized. It is given by

4 _ AT f(yp = 0). (9.82)

dT

The result for the dipole cannot be written explicitly and is not illustrative.
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For a general geometry (¢ # 0), we expand this function in an orthonor-
mal basis on the interval 0 to 1. Specifically, we assume that for 0 < T <1

df & ~
9 _ 5~ aQu®) (9.83)
a7 =
and zero otherwise, where
QuT) = V2 +1B(2T - 1). (9.84)

The Pj(x) are the Legendre polynomials. From the properties of these
orthonormal functions, we have Ag = f, and A; is calculated by inserting
the weighting function Q;(T) into the integrands in the calculation for f.
We recall that we have assumed, T = cos'/2 )

Using an orthonormal basis dramatically speeds the calculation of the
distribution. Additionally, because the P;(z) are polynomials, it is straight-
forward to calculate conventional statistics of the distribution

~ 1 '~df ~ V34 1

TY = = | T2dr=2"224 = 9.85
<> f/o de 6A0+2 ( )
~ VBAs V34 1

T2y = Y2, Vel - 9.86
< > 304, 6 4, 3 (9.86)

Unfortunately, with this basis is impossible to insist that distribution is ev-
erywhere non-negative, i.e. that no temperatures contribute negative flux.
However, if a sufficiently large number of A; are calculated, the intervals
where df/dT < 0 can be made to be arbitrarily small and to have an arbi-
trarily small contribution to the total flux. We compare the results of the
expansion with Equation 9.82 and find that the maximum relative error
in the expansion coefficients between the two techniques is approximately
9 x 1075.

Figure 9.10 depicts the results of this calculation for four values of the
stellar radius with ¢ = 0,7/2. In the left panel, we see in the absence
of general relativistic effects that when the neutron star is off-phase more
flux is produced at lower blackbody temperatures than when the magnetic
dipole is pointing toward the observer. For the smallest radius considered
(R = 6.25 km), the entire surface of the neutron star is visible and a large
portion of the front hemisphere has a second image. In this case, both the
flux-weighted temperature distributions at ¢ = 0 and 7/2 are peaked at
the maximum effective temperature. However, the distribution off-phase
has a more well populated tail extending toward lower temperatures than
on-phase.
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Figure 9.10: The fractional distribution of observed flux as function of the
surface blackbody temperature. The left panel depicts the distribution for
the minimal (R/R, = 1.52) and maximal radii (R = oo) considered. The
right panel depicts the distribution at a radii where f(p = 0) = f(p = 7/2)
(R = 8.85 km) and where the off-phase peaks are maximized (R = 7.9 km).
All the curves are normalized to have an integral of unity from T=0tol

The right panel depicts a value of the stellar radius (R = 8.85 km) where
there is practically no variation of f with phase. Additionally, we see that
the flux-weighted temperature distributions are nearly constant with phase.
Also depicted is the temperature distributions for R = 7.9 km, the radius
where the off-phase peaks are maximized. Here again, the distributions do
not change appreciably with phase. We conclude that for 7 < R < 9 km,
it would be difficult to detect variation of the spectra with phase, if the
neutron star surface indeed radiates as a blackbody.

To calculate the spectra themselves, it is convenient to define the fol-
lowing functions,

I NI S
Fi@) = o0 /0 AP 75—l (9.87)

where @ = hw/kTex(¢) = 0), so that

_ B > hw
£ = =y 2 A% (=) ©®

Since A; has units of flux, we obtain the correct units of flux-time for f,.
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To convert to the observed spectra, we must account for gravitational
redshift and interstellar absorption; we obtain (Page 1995)

— _ R2 _
fsbserved(w) — fw(e Asw)e A, D_020e Ngo(w) (9.89)
where
Re = Res (9.90)
where e~ is given in Equation 9.30. The final term accounts for inter-

stellar absorption and D is the distance to the neutron star. For o(E) we
use the Morrison & McCammon (1983) cross-sections.

Figure 9.11 depicts the spectra in the ROSAT energy range for two
neutron stars. Each of the spectra (light curves) is well fit by a blackbody
(heavy curves) at the mean effective temperature with an additional hard
component. The mean effective temperature (Tiean) is defined by

bserved : B
[ gererei)ds = oTheun T3 (9.91)

for Ng = 0, i.e. it is the equivalent blackbody temperature that accounts
for all of the energy emitted from the neutron star surface. The hard
component is most significant when the star is observed at right angles to
the magnetic axis, and originates from the portions of the hot polar caps
that are visible even when the star is off-phase.

In Appendix 9.A, we present two XSPEC models which are available over
the WWW. With these models, one may simulate observations from various
x-ray instruments to estimate the observed pulsed fractions for the models
discussed in this section. We present an example in Figure 9.13.

9.5.4 Neutron Star Cooling

We can use the results of the preceding sections to determine the effects of
the magnetic field on neutron star cooling rates. Specifically, we take the
ratio of the total flux from the surface with and without a magnetic field
for the same core temperature. We have used the results of Hernquist &
Applegate (1984). To determine the core temperature for a given flux we
combine their equations (4.7) and (4.8), switching from the first relation to
the second when the surface effective temperature drops below 4.25 x 10° K.
The results do not depend qualitatively on whether equation (4.7) or (4.8)
of Hernquist & Applegate (1984) is used.

To compare our calculated temperature-flux relation with the results
for isotropic heat transport, we multiply the fluxes for the magnetized en-
velopes by 0.4765 to account for a dipole field configuration. Additionally,
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Figure 9.11: The observed spectra from a neutron star with Teg(¢ = 0) =
7.5x10% K from a distance of 250 pc with an intervening absorption column
of N = 102°cm 2. The light curves show the spectra, and the heavy curves
show blackbody spectra at the mean effective temperature of the neutron
star. For the R = oo model, we have taken R/R; — oo while R = 20
km to give the surface area of the neutron star, while neglecting general
relativistic effects.
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we assume in our calculations that the envelope is isothermal above the
density (pmax) at which the first Landau level fills and use the temperature
(Timax) at this density to estimate the flux in the unmagnetized case. Only
for the strongest field strength considered (B = 10'® G) do our analytic
calculations extend to the core density assumed by Hernquist & Apple-
gate (1984) of 10'° g/cm?; however, we do not expect the results to be
strongly sensitive to this cutoff density as our solutions (for ¢ # w/2) are
nearly isothermal at high densities.

Figure 9.12 depicts the results of this comparison. We find that for
the weakest field strength considered (B = 10'* G), the magnetic field
has little effect on the total luminosity of the star. However, for cooler
core temperatures and stronger magnetic fields, the difference in the lu-
minosities can be up to a factor of ten. The flux ratio is sensitive to the
core temperature because Equations 9.71 and 9.72 have a slightly different
power-law index than the model assumed for the unmagnetized envelope
(0.392). The inflection in each of the curves occurs when the material
near non-degenerate-degenerate interface melts as the core temperature in-
creases. All the curves swing upward for high values of Ty, because for
high fluxes (i.e. high core temperatures) our assumption that the temper-
ature is constant for p > pmax no longer holds.

Because strongly magnetized neutron stars emit significantly more flux,
we expect that the thermal history of magnetars should be dramatically
different from that of neutron stars with weaker magnetic fields. We discuss
this issue further in a subsequent paper (Heyl & Hernquist 1997e).

9.6 Discussion

We have presented an analytic technique for calculating the thermal struc-
ture of ultramagnetized neutron star envelopes. We use the exact thermal
conductivities in an intense magnetic field of Silant’ev & Yakovlev (1980)
and Hernquist (1984) in the non-degenerate and degenerate regimes, re-
spectively. We make two simplifying approximations. We assume that the
interface between degenerate and non-degenerate material is abrupt. Hern-
quist (1985) numerically calculated the thermal structure for B = 104 G
without this assumption. Our agreement with this earlier result shows that
an abrupt interface is a good approximation. Secondly, we use a standard
simplification in the study of stellar atmospheres which is to use the radia-
tive zero solution to fix the outer boundary condition (Schwarzschild 1965).
Because the equation for the thermal structure in the outermost layers is
qualitatively similar to the relation for an unmagnetized envelope, we con-
clude that as in the unmagnetized case (Hernquist & Applegate 1984), this
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Figure 9.12: The ratio of fluxes in magnetized envelopes to those in un-
magnetized ones. We have assumed that the envelope is isothermal above
the densities given in the legend to estimate the unmagnetized fluxes.
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is also an accurate approximation.

Because the derived thermal structure equations are separable and sim-
ple to integrate, one may quickly calculate the thermal structure up to the
density at which the first Landau level fills for several field strengths, ge-
ometries and intensities of the transmitted flux. With the calculated grid
of models, we find that the relation between transmitted flux, field strength
and core temperature is well approximated by a power-law. Additionally,
because for much of the degenerate envelope, the conductivity along the
magnetic field is much larger than perpendicular to it, the transmitted flux
is proportional to cos? v, where 1 is the angle between the field and the ra-
dial direction. Greenstein & Hartke (1983) justified this relationship when
the conductivity is constant through the envelope. However, this justifica-
tion does not apply in the degenerate regime which throttles the heat flux
and where the conductivity varies by several orders of magnitude. Shibanov
et al. (1995) also found that this relationship holds for weaker fields in their
purely numerical treatment of the thermal structure.

If this cos? 4 rule is combined with a model atmosphere, we can calculate
the observed flux, by integrating over the neutron star surface and account-
ing for deflection of the light paths by the neutron star’s gravitational field.
We choose a blackbody atmosphere which has the added advantage that the
spectra shift and scale simply as a function of surface temperature. We find
that the observed spectra integrated over the visible portion of the surface
exhibit a hard component in addition to the best-fitting blackbody. Since
our calculated spectra agree quantitatively with those of Page (1995) for a
given maximum surface temperature and stellar radius, we find a similar
pulsed fraction of approximately 10% for theoretically acceptable radii of
1.4Mg neutron stars of 6.5 — 14 km (Thorsson, Prakash & Lattimer 1994;
Pandharipande 1971; Wiringa, Fiks & Fabrocini 1988). Although the ob-
served pulsed fractions are often as large as 30%—50% (Yancopoulos, Hamil-
ton & Helfand 1994; Halpern & Wang 1997), it may not be necessary to
resort to unrealistic large stellar radii or multipole components of the mag-
netic field (e.g. Page & Sarmiento 1996). A more realistic treatment of the
atmosphere may be sufficient to explain the large pulsed fractions.

Pavlov et al. (1994) argue that in addition to the transmission of heat
through the envelope, the emission at the surface is also strongly anisotropic.
Anisotropic emission can naturally produce large pulsed fractions even
when the temperature on the surface is uniform (Zavlin et al. 1995, Shibanov
et al. 1995). Additionally, the composition of the atmosphere may have a
profound effect on the emergent radiation. A magnetized iron atmosphere
produces substantial limb darkening for ¢ ~ 7/2, and the decrement is
strongest at high energies (Rajagopal, Romani & Miller 1997). It is straight-
forward to graft these atmospheres onto the thermal envelopes calculated
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here to obtained the observed time-dependent spectra for a variety of re-
alistic neutron star models. These effects may be sufficient to account for
the large observed pulsed fractions.

The calculation of the thermal structure itself suggests several avenues
for further work. Presently, these models are the only ones available for B >
10'2 G for conduction oblique to the field lines, and for B > 10'* G, the only
ones for oblique or parallel transport. A natural route is to extend these
analytic models to weaker fields. The calculation of the structure in the
non-degenerate regime is independent of field strength, and the degenerate
calculation is valid until the first Landau level fills. As the first Landau
level fills, both of the functions ¢ and @ are ill behaved, upsetting the
Sommerfeld expansion used to derive Equations 9.19 and 9.20, and 9.25
and 9.26; consequently, whenever ¢ = /14 2ng for n = 0,1,2,..., a well-
defined low-temperature limit for the degenerate conductivities does not
exist.

However, as long as the temperature does not approach the spacings
between the Landau levels (7 < 3), we can derive separable, although more
complicated, thermal structure equations for regions where the uppermost
occupied Landau level is neither nearly full nor nearly empty. Potekhin &
Yakovlev (1996) present practical formulae for the functions ¢, and ¢.; for
arbitrary field strengths and Landau levels, and for transverse conduction
the results of Hernquist (1984) are applicable for B < 10 G and the
lowest thirty Landau levels. Regions where ( & /1 4+ 2n/8 must be treated
separately either numerically or as an abrupt interface. It is likely that
the specific treatment of these regimes would have little effect on the core-
temperature-flux relation for the envelope.

A distinct approach is to treat the entire problem numerically, which
would allow us to estimate directly the possible errors that our simplifying
assumptions introduce and would alleviate the problem of how to treat the
regions where ¢ = /1 + 2nf by passing it on to the computer. Again, nu-
merical models for transverse conduction are not available for field strengths
exceeding 102 G, so this would a valuable exercise.

9.7 Conclusions

We derive nearly analytic models for the thermal structure of neutron star
envelopes with B > 10'* G and apply these models to calculate the dis-
tribution of effective temperature on the surface of the neutron star for
several core temperatures and magnetic field strengths. We find that the
relation between transmitted flux, core temperature and field strength may
be approximated by a power law and that the effective temperature is pro-
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portional to cos'/21) where 1) is the angle between the radial direction

and the local direction of the magnetic field. Using the geometric result,
we calculate the observed spectra as a function of viewing angle including
the effects of general relativity for dipole and uniform field configurations.
We extend the conclusions of previous work. If the surface is assumed to
radiate as a blackbody and neutron stars have radii within the currently
accepted range, the anisotropic heat transport induced by a dipole field
configuration is insufficient to produce the observed pulsed fractions even
for ultramagnetized envelopes.

Several avenues for additional study stand out. The assumption of
blackbody emission from the surface should be relaxed. More realistic at-
mospheres may be grafted onto these models in a straightforward manner.
A more subtle issue to explore is how to extend these calculations to weaker
fields where several Landau levels may be filled in the degenerate portion
of the envelope.

9.A Appendix : XSPEC Models

Rather than present results for specific instruments and band passes, we
supply our results in machine-readable form. We have calculated neutron
star spectra for several values of R/ R, and ¢ = 0,7/2. We assume a dipole
field configuration and the cos? ¢ rule. The model is calculated for

Turoo( = 0) = Ten(yp = 0)y/1 - "= = 10°K (9.92)
where Ry = 2GM/c?. Tefr,00(¢p = 0) may be varied by applying a redshift
and renormalization to the spectra. For ease of use by the x-ray astronomy
community, we have created XSPEC table models with the data.

Within XSPEC, the models may be convolved with the response matrix
for various x-ray instruments and compared with observed spectra. By
using the redshift (z) and normalization (K) parameters we may obtain
models for different effective temperatures and radii:

Roo,km 2 Teff,oo s

K = (Dm ) (106K (9.93)
108 K

z = TOH -1 (9.94)
eff,0o

where R xm is the source radius in km as observed at infinity, i.e.

R —1/2
Rs = Rt = (1 - E) (9.95)
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from Equation 9.90 and D;g is the distance to the neutron star in units
of 10 kpc. This particular choice is consistent with the definition of the
bbodyrad model in XSPEC.

Each additive model contains the single interpolation parameter R,/R
which ranges from 0 to 0.6601. As an illustration Figure 9.13 depicts one of
the models convolved with the ROSAT PSPC response function for R/Rs; —
00, R =20 km and D = 250 pc with Ng = 102° cm—2. Here, we have used
the wabs model to calculate the interstellar absorption which assumes the
Morrison & McCammon (1983) cross-sections.

The errorbars are calculated for an exposure of 10* seconds. For these
parameters, the variation of the thermal flux with phase is apparent in the
spectra. However, as we saw in the previous sections as R/R; decreases,
the variation in the thermal flux weakens.

The table models are available at the following URLs:
http://www.ucolick.org/~jsheyl/analytic ns/p0.fits for ¢ =0
http://www.ucolick.org/~jsheyl/analytic ns/p90.fits for ¢ = 7/2.
The XSPEC software itself is available at
ftp://legacy.gsfc.nasa.gov/software/xanadu/,
and an online manual is provided at
http://www.merate.mi.astro.it/~xanadu/xspec/umanual.html.
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Figure 9.13: The calculated model spectra convolved with the ROSAT
PSPC response matrix for ¢ = 0 (upper points) and ¢ = /2 (lower points).
The model parameters are described in the text. The errorbars are for an
exposure of 10* s.



Chapter 10

Numerical Models of
Neutron Star Envelopes

SUMMARY

The analytic study of neutron star envelopes presented in the previous chap-
ter is only applicable for neutron stars that are cold enough and have suf-
ficiently strong magnetic fields. Here, we present a numerical algorithm
to calculate the thermal structure of neutron star envelopes without the as-
sumptions made earlier. Unlike earlier work, we present envelope models in
two dimensions which precisely account for the quantization of the electron
phase space. Both dipole and uniformly magnetized envelopes are consid-
ered.

10.1 Introduction

Although analytic studies of neutron star envelopes can well characterize
the emission from cooling neutron stars, especially those with sufficiently
weak or sufficiently strong fields, most potentially observable neutron stars
have field strengths in neither of these limits and high core temperatures
which invalidate the low-temperature approximation used in the previous
chapter.

The analytic technique outlined earlier assumes that the only the first
Landau level is filled, the transition for the highly non-degenerate regime to
the highly degenerate regime is abrupt and that either electrons or photons
dominate the heat transfer. In the calculations is this chapter, all three
of these assumptions are relaxed, and the equations of thermal structure

159
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integrated using the opacity that approach those used in Chapter 9 in the
low and high temperature limits (Pavlov & Yakovlev 1977, Silant’ev &
Yakovlev 1980, Hernquist 1984).

In Chapter 9 several two dimensional models of neutron-star envelopes
were presented. Unfortunately, the separation of the structure equation
required that the two-dimensional models be restricted to the case where the
entire degenerate portion of the envelope is the liquid state. Here, because
the equations are solved numerically, this restriction is not important. We
construct several uniformly magnetized envelopes whose surface emission
follows the cos?4 rule outlined earlier and verify that this distribution
yields a uniform core temperature more generally. These two-dimensional
results are compared with those of Schaaf (1990a) and extended to include
envelopes with a dipole field structure.

Although it would be straightforward to examine additional effects such
as Coulomb corrections (e.g. Van Riper 1988, Thorolfsson et al. 1997), for
clarity and brevity only the processes included in Chapter 9 are incorpo-
rated and the effects of the approximating assumptions determined.

10.2 The Physical Description of the Enve-
lope

Because the assumptions made in the preceding chapter will be relaxed, it is
important to present the complete equations governing the thermal struc-
ture of neutron star envelopes. Again as argued earlier a plane-parallel
treatment is suitable for the problem. Again the following set of dimen-
sionless units will be used

th h|e| N B

= = =] 10.1
p mec?  m2cd 44 %101 G’ (10-1)
kT T
= ~ 10.2
T mec2 5.9 x 10° K’ (10.2)
E Iz
7 MeC2 and ¢ mec? (10.3)

where the E is the energy of an electron and y is the chemical potential of
the electron gas. It is also convenient to define n = (¢ — 1) /7.

10.2.1 The Thermal Structure Equation

If we assume that the pressure is supplied by the electrons alone, the general
relativistic equations of thermal structure in the plane-parallel approxima-
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tion assume the simple form (Hernquist 1985)

-1
dr_ [op| , (mu_x _S\1
a [f%g*(n ) CT] 1oy
d¢ opl \ 7 op| dr
dp ( T) or |, dp (105)
dz_ d{mec? F S\ !
% B _d_P 9s (1_;”6“) (10:6)

where Y, = Z/A. Z and A are the mean atomic number and mean atomic
mass of the material. For partially ionized matter, Y, is given by the
product of Z/A and the ionized fraction. m,, is the atomic mass unit, F'
is the flux transmitted through the envelope, g, the acceleration of gravity
as measured at the surface, S, and n. are the entropy and number density
of the electron gas. By using the plane-parallel approximation, we have
assumed that the magnetic field does not vary in direction or magnitude
over the scale of the thickness of the envelope (hg), i.e. |[B/VB| > hg.
For a multipole of order n, this is equivalent to R/n > hg, which holds for
n < 100.

Since we are treating transmission at an arbitrary angle 1) with respect
to the magnetic field k, the thermal conductivity, is the sum of two contri-
butions

K = Kz COS 1) + Kyy sin® ¢ (10.7)

where the field is taken to point in the zz direction.

10.2.2 Thermodynamics and Equation of State

In an extremely strong magnetic field, the quantization of electron energies
into Landau levels restricts the phase space of the otherwise free electron
gas (Hernquist 1985), and its thermodynamic properties are given by

ﬂ nmax
Ne = —ﬁ/ Z gnQn <_>; (108)
7o o[t (1)
n o nln -
7d7 Z 9n |any — X .

n

m602>
X , (10.9)
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4/2 f Z 9n [an7+Xn In (7)(—)]
mec2
x ( ) : (10.10)
Xe
B ~ . of Sy gn My 1
ot | D ; o\ 7o 57) (10.11)
B of ~v Cnmax In My 1
- = CAL 10.12
272 d@’y T ;an Yexeg . (1012)
B 6f 7= (RN k
2
_ -1
Nmax = 23 (10.14)
a, = 7V -x (10.15)
(10.16)
gn = 2—=10no (10.17)
Xn = 1+2n8 (10.18)
1
fy = (10.19)

L+exp[(y—0) /7]’

and X, is the electron Compton wavelength.
The non-degenerate, degenerate and the unmagnetized limits of these
quantities are useful in the numerical integration of the envelope.

Non-degenerate, non-relativistic limit.

In the non-degenerate and

non-relativistic limit, we obtain (Hernquist 1985)

Te

P,

€e

VT ﬂe3 7 Z gn exp(—nfB/T) (%) (10.20)

neTmec, (10.21)

Nemec® [1 + % + Besch (g)] : (10.22)

%(2&% > gnexp(—npB/7) (%%) (10.23)
n=0 € Ae
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@
arm

- %WZgneXP nﬂ/T)( +—6—’7>

my, 1
X (7 F) , (10.24)

S, = F ﬁeg/zzgnexp (-npf) (3+72 )

x (%) . (10.25)

Degenerate limit. To obtain the degenerate limit of expressions 10.8
through 10.13, we compute the Sommerfeld expansions of the expressions.
The first term in the expansion is obtained through the substitution

df T2,

) — — 71263 (y - 10.26
& 00 -0 - -0 + (10.26)
where §(z) denotes the Dirac delta function. For expressions 10.12 and
10.13, the first term in the expansion is zero and we obtain the following
results for the degenerate limit

6p Tbmax (mu 1 )
op = gn Tu ~ ), (10.27)
07 l¢s Z Ye x°
T nmax "
S, = ﬂ ¢ 3y Zn <_) (10.28)
n=0 €

All of the thermodynamic quantities above with the exception of n, and P,
feature singularities at ( = x,,; therefore, these degenerate expressions are
only appropriate when | — x| > 7.

Unmagnetized Limit. If many Landau levels are filled, the unmagne-
tized limit of expressions 10.8 through 10.13 may provide a useful approxi-
mation. If the integrand contains singularities at v = X, the unmagnetized
limit is only useful if the distribution function is thermally broadened over
many such singularities or |( — xn| > 7.

In the unmagnetized limit, we obtain

1 *4f s 32 (1
- _ -1 10.2
Te 372 1 d’yd,7 (’7 ) <Xe3> ’ ( 0 9)
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1> df
P, = ——
¢ 87r2/1 dy Ty
2 5
x['y 72—1<§72—§)+ln(\/'y2—1+'y)]
mec2>
X : (10.30
(xf )
B 1 [~ df
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[’y 12-1(29*-1) - ln(\/’y - +’y)]
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x , (10.31)
(xf
dp 1 [~ df w 1
6_CT =, dfyd YV v? —1( F) (10.32)
op B 17— my 1
5, - / a3t = e (7—3) (10.33)
S T B 3/2& k.
S, = 37T2/1 dfyd (v*-1) —\55) (10.34)

10.2.3 Thermal Conductivities

Throughout the envelope, the heat is carried by electrons and photons.
In the degenerate regime, electrons dominate the heat transfer and in the
non-degenerate regime photons carry most of the heat.

Photon Conduction

As argued in the previous chapter, for the envelopes that we will examine
the photon conduction is impeded mainly by free-free interactions with the
electron gas rather than by electron scattering. Regardless, corrections to
the free-free opacity have a negligible influence on the flux-core temperature
relation (Hernquist & Applegate 1984). Here, we will use the thermal
conductivities tabulated by Silant’ev & Yakovlev (1980) and the analytic
expressions of Pavlov & Yakovlev (1977).

Electron conduction

For the electron conductivities, we use the calculations of Hernquist (1984).
Although the analytic expressions for the parallel conductivity derived by
Potekhin & Yakovlev (1996) are convenient, corresponding expressions for
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the transverse heat flow are lacking; therefore, for consistency, we use the
parallel and perpendicular thermal conductivities of Hernquist (1984).

In the absence of an electric current, The thermal conductivity tensor
(k) is most concisely expressed as a combination of the transport coefficients
(Hernquist 1984)

k=y—TX-(o)"'-A (10.35)

where 7, A and o are the thermal conductivity, thermoelectric and electrical
conductivity tensors respectively.
If we take the field to point along the z direction locally,

02z © 9 e?
1 1 s T R
Yzz 1 v anec2 (’7 - C)Z/T
1 1
X (Kj%m) (10.36)
O'yy 1 oo af 62
Ayy = Ton2 EM —|€|(C(7—C)/T Q(V5 /G)d'V
Yyy ! K kmec®(y — €))7
h
X <00ni) (10.37)
where
v="1/p, (10.38)

n; is the number density of ions (n./Z), oo is the scattering cross section
and ¢ and @ are perturbations to the distribution function and the diagonal
component of the density matrix f,s(p.,ys), summed over Landau level n
and spin s (Hernquist 1984).

Degenerate limit. In the fully degenerate limit, the expressions for «,
and Ky, simplify,

hee = éﬁmﬁ(C/ﬁ;ﬁ)( an) (10,39
e U074
w = gre/mp (TR (10.40)

Scattering cross sections. In the liquid state, electron-ion scattering
dominates the resistance to electron conduction. Here the scattering cross

section is 5 5
T/l 2
0g= ——A\

e (10.41)
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where a ~ 1/137 is the fine-structure constant. In the solid state, electron-
phonon interactions provided the resistance and we have

QU_o T 1 2
o9 = | —= 1A, 10.42
0 2 ﬁ (nixeg> ( )

and we take u_» & 13 (Yakovlev & Urpin 1980, Potekhin & Yakovlev 1996)
for a body-centered cubic lattice.

The perturbations to the distribution function. The functions @
and ¢ are laborious to calculate. Hernquist (1984) gives fitting formulae for
n < 30 at field strengths of B = 10!, 10115, 1012, 10'2-3, 10'3, 1035 and
10'* G. Additionally, to calculate the thermal structure of an envelope with
an dipolar magnetic field, we have calculated the function ¢ at B = 2 x 10'2
and 2 x 10" G for n < 30 and at B = 2 x 10'* G for n < 35. Therefore, for
fields B > 2 x 10'* G, the effect of the quantization of the electron phase
space on the conductivity is included through the entire envelope.

When only one Landau level is filled, the functions ¢ and ) may be
expressed analytically. In this limit, we use the following expressions

b(iB) = ul"Baw)] ™, (10.43)
Qulrf) = B+ —2"Eiw) (10.44)
bei(v;8) = lw [w Tag exp(w + aq) By (w + ad)] ) , (10.45)

Qei(1;8) =

S|~ @

(=)}

{WW+D+%%@W+M@W+M

+8(aq + 1)(g2 + 1)e* Ey (aq) — B(2 + qS)} (10.46)

where

2 _ 2
@ = 71 (10.47)

2q3
w = =9, 10.48
3 ( )

g 1/3

= 0.15( =2 10.4
aq 0 5(%) , (10.49)

and E, () is an exponential integral which is easily calculated and is defined
by

n

oo —xt
En(a:):/ et—dt, >0, n=0,1,... (10.50)
1



10.3. RESULTS 167

Unquantized limit. To extend the conductivities beyond the maximum
Landau level tabulated we use equations (186) through (189) of Hern-
quist (1984) to calculate the unmagnetized counterparts of ¢ and @. In
the liquid state we obtain,

2 _ 1 3
¢ei(’/;/3) %a (1051)
2
Qutrif) = 2 (10.52)

where the Coulomb logarithm A.; is set to ensure continuity between the
unquantized limit and the quantized calculations. It ranges from 1 at 10'! G
to 0.55 at 10 G. In the solid state we find

¢ -1)°
bep(v; B) %7 (10.53)
Qep(v;B) = % (10.54)

10.2.4 Numerical Integration of the Envelope

To determine the thermal structure of the neutron star envelope, we inte-
grate equations 10.5 through 10.6 using the photospheric boundary condi-
tion (e.g. Kippenhahn & Weigert 1990)

(10.55)

where k is the opacity and o is the Stefan-Boltzmann constant. We omit
Equation 10.5 from the system opting instead to solve for { by inverting
ne(C,7;8). The system is integrated with Inp as the independent vari-
able using a Runge-Kutta method with adaptive step size control (Press
et al. 1988). The properties of the envelope are calculated at 200 equally
spaced steps in In p through the envelope. A smaller stepsize results in an
unacceptable accumulation of roundoff errors. The envelopes are integrated
up to a density of 10'° g cm—3.

10.3 Results

In this section we present the results of these numerical calculations. Specif-
ically, we focus on several aspects of the envelopes: the thermal structure
itself, the effect of dipolar fields on the moment of inertia of the envelope,
the angular dependence of the flux for a constant field strength and the
relationship between the transmitted flux and core temperature.
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10.3.1 Thermal Structure

Parallel Conduction. If the quantization of the electron phase space
is neglected, the magnetic field has no effect on the thermal conduction
in the degenerate regime. We find that because this quantization cannot
be neglected for B > 10'? G, the magnetic field modifies the flux-core
temperature relation, especially for relatively cool neutron stars. The case
of parallel conduction has been treated in detail by Hernquist (1985) and
Van Riper (1988), and we find similar results here.

Figure 10.1 depicts the temperature, chemical potential, entropy and
thermal conductivity as a function of density through the crust at Teg =
10% K. The small discontinuity in the value of S. at low densities occurs
when the integrator switches from using the nondegenerate, nonrelativistic
expression for ((n,7; () to numerically solving for (. This discontinuity
does not affect the integration through the nondegenerate regime.

The run of electron entropy as a function of density or depth through
the envelope is not monotonic in the presence of a strong magnetic field.
When one studies the total entropy, the nuclear contribution does weaken
this effect, but the total entropy still does attain a maximum as the first
Landau level is being filled. This entropy inversion indicates that mag-
netized neutron star envelopes may be convectively unstable. However, a
strong magnetic field also stabilizes a material against convection (). To
determine whether convection is indeed important requires further study

Our values for the core temperatures using the Hernquist (1984) con-
ductivities are generally slightly higher for strong fields (~ 3%) than those
obtained by Hernquist (1985) because we have varied A.; to ensure continu-
ity between the magnetized and the unmagnetized conductivities. A more
substantial difference is apparent in the value of the thermal conductivity
in the nondegenerate regime. Because the thermal conductivity is nearly
a power law in this region, we expect the conductivity to be nearly con-
stant here. According to Hernquist & Applegate (1984) for a unmagnetized
atmosphere, the conductivity in the nondegenerate regime is

jo QT O F Yk (10.56)

a  gs My

where a = 2 and § = 6.5 for free-free scattering. However, in the magne-
tized case we obtain Equation 9.63,

R_a+6—2EYek
a gs My

. (10.57)

The thermal conductivity along a solution in the nondegenerate regime
should be about 45 % larger for an unmagnetized envelope than for a mag-
netized envelope. This effect is apparent in Figures 10.1 and 10.2, but not
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Figure 10.1: The thermal structure for a radial field at an effective temper-
ature of 108 K. The solid curve traces the solutions for B = 0, the short
dashed curve gives B = 10'2 G, the long dashed curve is 10'® G and the
dot-dashed curve follows the B = 10'* G solution. The solid line traces the
solid-liquid phase transition in the p — T plane.
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Figure 10.2: The thermal structure for a radial field at an effective tem-
perature of 10%-% K (upper panels) and 10%® K (lower panels). The lines
follow the solutions for the same field strengths as in Figure 10.1.

in Figures 7 through 9 of Hernquist (1985). We find that the thermal con-
ductivity in the nondegenerate region is given precisely by Equation 10.56
for the unmagnetized envelopes and by Equation 10.57 for the magnetized
ones. The results of Hernquist (1985) both of magnetized and unmagnetized
envelopes follow Equation 10.56. We are not certain of the origin of this
discrepancy, but we suspect that it is due to an error in evaluating the con-
ductivities in the nondegenerate limit. We expect that the results for cool
envelopes which depend sensitively on conductivity in the region to differ
between the work presented here and that of Hernquist (1985). Otherwise,
the results for Tes = 10° K agree well with those of Hernquist (1985).

Figure 10.2 depicts the physical conditions of the envelope as a function
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Table 10.1: Values of the core temperature in units of 107 K
1OgTeff

B(G)| 55 56 57 58 59 6.0
0 1.68 2.76 4.01 591 8.76 13.1
102 | 3.14 3.34 391 5.14 7.55 11.6
10 | 3.07 3.13 349 445 6.30 9.33
1014 | 2.21 3.06 3.43 4.37 6.07 8.86
1OgTeff

BG) |61 62 63 64 6.5

0 19.8 30.0 454 679 101.
1012 | 179 273 414 61.7 919
102 | 143 221 344 528 80.9
104 | 13.0 19.3 289 43.1 629

of density for effective temperatures of 10°-5 K (upper panels) and 10%% K
(lower panels). In the colder envelope, the oscillations of the thermody-
namic quantities because of the quantization of the electron phase space
is apparent. At higher and lower effective temperatures, the differences
compared to the results of Hernquist (1985) are substantially larger. We
obtain the solutions with higher core temperatures at Teg = 10°® K than
Hernquist (1985) did because of the differences in the thermal conductiv-
ities in the nondegenerate region. Additionally, the relationship between
the core temperature and magnetic field strength is complicated at such low
effective temperatures. Specifically we find that for T, < 10°% K the core
temperature for an unmagnetized envelope is lower than in the magnetized
case.

At T.g = 10%° K the situation is reversed. The envelopes studied
here tend to yield cooler core temperatures than those studied by Hern-
quist (1985). For the hot envelopes with B < 10'3 G, the core tempera-
ture depends sensitively on the thermal conductivity in the liquefied region
where more than thirty Landau levels are filled. In this region, unlike in
Hernquist (1985) we have adjusted the value of A.; to ensure continuity
between the magnetize results and the unmagnetized limit. This yields
slightly higher parallel conductivities for the liquid state, and consequently
lower core temperatures.

Table 10.1 summarizes the results for several effective temperatures and
magnetic field strengths.

In Figure 10.3, we compare the 10'* G models with the analytic models
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Figure 10.3: Comparison of analytic and numerical envelope solutions.
From top to bottom, the curves follow the solutions for T,g = 10%% K,
10% K and 10%® K. The left panel depicts the dependence of temperature
on density through the envelope of the neutron star. The right panel gives
the run of conductivity with density. The solid lines trace the analytic
solutions and the dashed follows the numerical results.

discussed in Chapter 9 at Tog = 10°-5,10% and 10%-% K. At T, = 10° K,
the numerical model has a core temperature 11 % cooler than the analytic
treatment. The two approximations in the analytic model contribute er-
rors that partially cancel. Since the analytic treatment assumes that either
photon or electron conduction operates, it underestimates the conductivity
in the semidegenerate region; consequently, in the degenerate regime, the
analytic envelope is slightly hotter, and the resulting conductivity is larger
than that of the numerical envelope at the same density. Above the den-
sity at which the first Landau level fills, the analytic treatment effectively
assumes that the conductivity is infinite. Because the core temperature
depends most sensitively on the conductivities in the semidegnerate region
(e.9. Gudmundsson, Pethick & Epstein 1982), the net effect is that the
numerical envelope at 10¢ K yields slightly higher core temperatures than
the analytic treatment.

For hotter and cooler effective temperatures, the cancellation among the
errors introduced by the approximations is far less exact. At Teg = 10°° K
the numerical treatment yields a core temperature 30 % hotter than the
analytic model. At the Ty 5 K the contribution to the insulation of the core
from material with more than one Landau level filled is substantial and the
core temperature estimate is 50 % hotter for the numerical models than
the analytic treatment.
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Figure 10.4: The thermal structure for a tangential field at an effective
temperature of 1036 K. The lines follow the solutions for the same field
strengths as in Figure 10.1.

Perpendicular Conduction. FEven classically, conduction perpendicu-
lar to the magnetic field is affected dramatically by a strong magnetic field.
We again examine several magnetic field strengths. Figure 10.4 depicts the
results for an effective temperature of 105-% K for perpendicular conduction.
The core temperature for a fixed effective temperature varies dramatically
with the magnetic field strength. The bulk of the effect is classical in na-
ture, the magnetic field deflects the electrons from carrying heat away from
the surface.

The quantization of the electron phase space is also manifest for the
perpendicular case. Because the function Q(v,3) diverges as a Landau
level begins to fill, the conductivity increases dramatically near the start of
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each Landau level, and the run of temperature exhibits plateaux at these
densities. As we shall find in the next subsections, perpendicular trans-
port cannot be neglected an important range of effective temperatures and
magnetic field strengths.

10.3.2 Angular Dependence

To examine the angular dependence of the flux transmitted through an
uniformly magnetized envelope, we will take two routes. First, we use the
method demonstrated in Figure 9.7 and vary the effective temperature as
a function of angle to shoot toward a fixed core temperature.

Figure 10.5 gives the results of this comparison. Both the cos® 1) rule
and the best fit acos® + bsin?4 fit the results to within 10 % of the
total flux. Schaaf (1990b) presents the results of a set of two-dimensional
calculations with a fitting function

Tesr (¢)
Teff(o)

= X($) = x (90°) + [1 = x (90°)] cos® . (10.58)

Schaaf (1990b) studies field strengths up to 10'? G, so we assume that the
parameters a and x (90°) for Teg = 105 K follow a power law in the field
strength for stronger fields. For B = 103 G, we obtain @ = 0.48 and
X (90°) = 0.10. This model is traced by the dashed line in Figure 10.5 and
agrees to within 6.5 % of our results.

Bolstered by the success of the cos? ¢ rule, we perform a second test
in which the flux along the surface varies at cos? psi and determine by
how much the core temperature varies for several models. Figure 10.6
depicts the results of these calculations. A horizontal line for a given set
of calculations would indicate adherence to the cos? ) rule. Generally, the
largest departure from the cos? ¢ rule is where the heat is transmitted at
large angles to the magnetic field direction.

We define a figure of merit for each value of the flux at ¢ = 0 and
magnetic field strength,

1 N

where u signifies an unweighted summation.

A large value of Y, signals that conductivity perpendicular to the field
lines is significant in determining the core temperature given the trans-
mitted flux. Table 10.2 depicts the results for several field strengths and

(10.59)

Te(¢:) = Tc(0) ‘
T.(0)
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Figure 10.5: Results of a numerical two-dimensional calculation for B =
10'2,10" G at Teg = 10° K for ¢ = 0. The upper panels present the
results for the weaker field strength. The left panels give T'(p) for the
various models. The right panels compare the flux distribution (crosses)
with the cos? ¢ rule. The lower solid line gives the cos? 1 rule and the upper
dotted line traces the best fit model of the form acos? ) + bsin?¢). Here,
a = 1.02 and b = 0.0264 for 10!2 G, a = 1.06 and b = 0.0245 for 10'3 G.
The upper dashed line traces the results of Schaaf (1990b) (extrapolated
using a power law to B = 10'® G.)
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Figure 10.6: The core temperature as a function of angle for fluxes that
follow the cos?t rule. The lower lines are for Teg(¢y = 0) = 10°° K,
and middle lines follow the 10® K solutions, and the upper lines trace the
1085 K results. The lines follow the solutions for the same field strengths
as in Figure 10.1.

Table 10.2: Values of YT in percent as a function of magnetic field and
effective temperature
Ty Ty
log Tes log Tes
B(G)| 55 60 65| 55 6.0 6.5
10™ 086 84 21.[ 1.1 3.7 16.
10 [ 0.74 49 6.1 |054 24 19
10t 12 72 35| 70 4.0 20
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effective temperatures. We find two trends. For weak fields, the low effec-
tive temperature solutions follow the cos? ) rule more closely than hotter
envelopes. For strong fields, the trend is reversed.

From an observational point of view, the error in the total predicted
luminosity of the object is more important. We weight the residuals by
cos? ¢ sin1). This neglects gravitational lensing and assumes the field dis-
tribution is uniform. We define

Tg _Zcos ¢51n¢ — ‘/Zcos%ﬁsinzb (10.60)
1

where L signifies a luminosity-weighted summation. The values of Y, tend
to be smaller than those of T, because the weighting function is peaked at
cos® 1) = 2/3, approximately 35°, where the departure from the cos? 1 rule
is small. We find that for effective temperatures near 108 K the cos? ) is
followed. However, one must be wary in applying this rule for cool strongly
magnetized envelopes where the quantization of the electron phase space
increases the perpendicular conductivity dramatically or hot weakly mag-
netized ones where the classical relaxation time is no longer long compared
to the relativistic cyclotron frequency.

10.3.3 Flux-Core-Temperature Relation

We revisit the flux-core-temperature relation presented in Table 10.1. Fig-
ure 10.7 displays these results graphically. We see that for very cool mag-
netized envelopes, the relationship departs from a power law. However, for
Teg > 1057 K, the relationship is well fit by a power law with root-mean-
square residuals of less than 3%.

We also have calculated for the envelopes with conduction perpendicular
to the field for T, = 10%3 K and 10%6 K, sufficient to determine the
power-law flux-core-temperature relation for the perpendicular case. For
higher effective temperatures, the core temperature exceeds 10° K. For such
high core temperatures our assumption that the core is thermally relaxed
breaks down (Nomoto & Tsuruta 1981). For lower effective temperatures,
the details of the equation of state at low densities become important,
i.e. Coulomb corrections (e.g. Van Riper 1988).

We fit the flux-core-temperature relation with a power law of the form,

Ter =TorTex6- (10.61)

Table 10.3 presents the results of the fitting. The slope of flux-core-temperature
relation for the parallel case is approximately that found in the analytic



178 NUMERICAL NEUTRON STAR ENVELOPES

8.5 —

log,, T, (K)

7.5 e

5.6 5.8 6 6.2 6.4
log,, T, (K)

Figure 10.7: The flux-core-temperature relation as a function of magnetic
field strength. The lines follow the solutions for the same field strengths as
in Figure 10.1.

Table 10.3: Power-law parameters for the flux-core-temperature relation.
B (G) | T||,0,7 a” RMS Residual TL,0’7 o]

0 13.3 1.76 0.004
102 120 1.76 0.018 53.5 1.21
10'3 10.1 1.76 0.030 123. 1.16

104 9.35 1.62 0.023 214. 1.17
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treatment of Chapter 9 (Equations 9.71 and 9.72). However, the relation-
ship with magnetic field strength is a much shallower power law than found
earlier.

10.3.4 Dipole Fields

It is straightforward to construct the effective temperature distribution for
a dipole by interpolating the flux-core-temperature relation as function of
field strength and field inclination. However, determining the thermal struc-
ture in this manner is less trivial. The goal is to determine if an intense
magnetic field can cause the envelope to become oblate through its effect
on heat transport, so we will examine perpendicular and parallel transport
for a field strength at the pole of 2 x 10'* G by recalculating an envelope
solution and matching the core temperature at the pole and the equator.
For illustration we choose Teg(1) = 0) = 1094 K which yields a core tem-
perature of 4 x 108 K. Along the magnetic equator, substantially less heat
flows through the envelope. Here, Tog ~ 10°-38 K.

Figure 10.8 depicts the two solutions. The run of temperature with
density is substantially different for the two solutions, so we would expect
that the moment of inertia of the envelope at the pole would differ from that
at the equator. To first order, the moment of inertia of the envelope depends
on the total mass of the envelope and the mass weighted mean radius of
the envelope. The envelope is about 0.7 % thinner and less massive at
the equator than at the poles. For a neutron star with R = 10% km and
I = 1.4 x10% g cm?, the moment of inertia of the envelope at the pole
differs by a factor of 1.2 x 1072 relative to the equatorial value. This
difference results in a relative difference in the moment of inertia along and
perpendicular to the magnetic field of 10711,

10.4 Discussion

The calculations here are patterned after those of Hernquist (1985), and
for the case of parallel conduction we reproduce his results with a few ex-
ceptions. Because we use the formulae of Pavlov & Yakovlev (1977) to
extrapolate the free-free opacity in the non-degenerate regime beyond the
tabulations of Silant’ev & Yakovlev (1980), we find different thermal struc-
ture in the nondegenerate region than Hernquist (1985) who extrapolated
the calculations of Silant’ev & Yakovlev (1980) directly, did; consequently,
for those especially cool envelopes whose core temperatures depend criti-
cally on these opacities, we find that our envelopes transmit less flux for a
given core temperature. To calculate the thermal conductivity due to elec-
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tron transport, we have extrapolated the tabulations of Hernquist (1984)
for n > 30 in manner which maintains continuity between the magnetized
and unmagnetized limits. Specifically, this results in a slightly higher elec-
tron conductivity for n > 30 than Hernquist (1985) used. We find that
for high effective temperatures, more flux is transmitted for a given core
temperature than Hernquist (1985) found.

By examining transport oblique and perpendicular to the field direction,
we have extended the earlier work of Hernquist (1985) and Van Riper (1988)
into two-dimensions, and the work of Schaaf (1990b) to more intense mag-
netic fields and more complicated field geometries. Schaaf (1990b) solves
the thermal structure equation in two dimensions using the conductivities
of Schaaf (1988) for B < 10" G. Using the same set of conductivities,
Schaaf (1990a) treats the cases of parallel and perpendicular transport us-
ing a plane-parallel approximation for B < 1013 G.

Rather than solve the two-dimensional thermal structure equations di-
rectly, We have argued in Chapter 9 that the plane-parallel approximation
holds for the relatively thin envelopes of neutron stars. The slope of the
flux-core-temperature relation for the longitudinal case agrees with the fit
of Schaaf (1990a) to within 15 %, and the normalization agrees to within
8 %. Furthermore, Schaaf (1990a) also found an upturn in the flux-core-
temperature relation for magnetized envelopes with low effective temper-
atures. For the transverse case, we find that the flux-core-temperature
relation has a similar slope as Schaaf (1990a) but our models tend to have
higher core temperatures.

Our results do not extend beyond an effective temperature of 108 K
(longitudinal case) and 105 K (transverse case). For higher effective tem-
peratures the core temperature exceeds 10° K, and it is unlikely that the
core has relaxed thermally yet (Nomoto & Tsuruta 1981).

Schaaf (1990b) summarizes the results of the two-dimensional calcula-
tions in terms of fitting functions (Equation 10.58). In this notation we
have examined the applicability of two models. Both models have a = 0.5.
The first fixes x (90°) = 0, the cos? ¢ rule, and the second allows x (90°)
to vary, the acos? 1 + bsin? 1) rule.

The two works have only the Tog = 108 K with B = 10'? G model in
common, but our results assume a given flux rule and determine the change
in core temperature. However, we found that the model Tog = 10%® K and
B = 10'? G is well fit by the cos? 9 rule. Using Schaaf (1990b) interpolation
formulae, we obtain a = 0.44 and x (90°) = 0.32 which yields more flux
at large values of ¥ than we found. We also extrapolated the interpolation
formulae of Schaaf (1990b) to 10'3 G for Teg = 10° K and find agreement
within 7%.

Several directions for further work stand out. The equation of state at
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low densities may be affected by Coulomb corrections. Van Riper (1988)
found that Coulomb corrections play an important role for effective tem-
peratures less than 6 x 10° K at 10'* G. Their contribution sets in at
lower effective temperatures for more weakly magnetized envelopes. Van
Riper (1988) prescription for including Coulomb corrections resulted in neg-
ative pressures at low densities. Thorolfsson et al. (1997) have developed
a Thomas-Fermi technique which accounts for the quantization of the elec-
tron phase space which may be applied to envelope calculations without
encountering the difficulties that Van Riper (1988) found.

In the degenerate regime where electron conduction dominates, the con-
ductivities are still uncertain. Potekhin & Yakovlev (1996) have derived
convenient analytic formulae to calculate the longitudinal transport coef-
ficients. Potekhin & Yakovlev (1996) make slightly different approxima-
tions. They include the Debye and electron screening in the fluid phase
and the Debye-Waller factor in solid state. This factor tends to increase
the conductivity over a wide range of temperatures and densities (Itoh
et al. 1984, Potekhin & Yakovlev 1996). With an equally complete treat-
ment of the transverse conductivities, this work could be extended reliably
into a wider range of effective temperatures and magnetic field strengths.

To connect these results with recent observations of isolate neutron stars
(e.g. Greiveldinger et al. 1996, Possenti, Mereghetti & Colpi 1996, and see
Table 9.1), we must calculate how a magnetized atmosphere determines
the emergent spectra from various locations on the neutron star (Pavlov
et al. 1994, Pavlov et al. 1996; Rajagopal, Romani & Miller 1997), and
convolve these spectra with the effects of gravitational self-lensing to de-
termine the portion of the neutron star visible as a function of rotational
phase (Page 1995, Chapter 9).

10.5 Conclusion

We have presented a series of numerical models of neutron star envelopes
calculated in the plane-parallel approximation for B = 10'? to 10 G,
Ter = 1053 to 108° K, for several inclination angles of the magnetic field.
We find agreement with earlier one and two-dimensional calculations, and
verify that the flux along the surface is approximately proportional to
the square of the cosine of the inclination angle for neutron stars with
Teg ~ 10% K. For hotter and cooler envelopes, this rule provides a poorer
approximation.
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Chapter 11

The Thermal Evolution of
Ultramagnetized Neutron
Stars

SUMMARY

Using recently calculated analytic and numerical models for the thermal
structure of ultramagnetized neutron stars, we estimate the effects that ul-
trastrong magnetic fields B > 10 G have on the thermal evolution of a
neutron star. Understanding this evolution is necessary to interpret mod-
els that invoke “magnetars” to account for soft y-ray emission from some
repeating sources.

11.1 Introduction

Neutron stars with extremely strong magnetic dipole fields (B > 10' G)
may form if a helical dynamo mechanism operates efficiently during the
first few seconds after gravitational collapse (Thompson & Duncan 1993)
or through the conventional process of flux freezing if the progenitor star
has a sufficiently intense core field. These “magnetars” initially rotate with
periods P ~ 1 ms, but would quickly slow down due to magnetic dipole
radiation and cross the pulsar death line after about 105 — 10® yr. With
their strong magnetic fields, magnetars have been used to explain several
phenomena including gamma-ray bursts (Usov 1992, Duncan & Thomp-
son 1992) and soft gamma repeaters (Thompson & Duncan 1995).

185
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Shibanov & Yakovlev (1996) have recently discussed how magnetic fields
B < 10135 G affect neutron star cooling. (Throughout, we will use the
symbol B to denote the field strength at the magnetic pole.) They find
that below B ~ 10'2 G, the magnetic field suppresses the total heat flux
radiated by a neutron star. However, for B > 10'? G, the quantization
of the electron energies enhances the conductivity along the field lines,
resulting in a net increase in the heat flux. Here, we extend these results
into the ultramagnetized regime with B = 10** — 10'¢ G.

In this Letter, we will discuss the cooling evolution of neutron stars
which have not accreted significant material from their surroundings, i.e. neu-
tron stars with iron envelopes.

11.2 Model Envelopes

Heyl & Hernquist (1997a) have developed analytic models for ultramagne-
tized neutron star envelopes and find that the transmitted flux through the
envelope is simply related to the direction and strength of the magnetic field
and to the core temperature (T,). Using these results as a guide, we nu-
merically integrate several envelopes with B = 10'4 — 106 G for the case of
parallel transport. We will present the detailed results of these calculations
in a future article.

At the outer boundary, we apply the photospheric condition (e.g. Kip-
penhahn & Weigert 1990). In the non-degenerate regime, photon con-
duction dominates. For the range of effective temperatures considered
free-free absorption is the most important source of opacity, and we es-
timate the anisotropy factor due to the magnetic field using the results of
Pavlov & Panov (1976) and Silant’ev & Yakovlev (1980). In the degener-
ate regime, electrons dominate the conduction; we use the conductivities
of Hernquist (1984) or Potekhin & Yakovlev (1996) and present results us-
ing both these values. In the semi-degenerate regime, both processes are
important, so we sum the two conductivities.

Potekhin & Yakovlev (1996) give formulae to calculate electron conduc-
tivities in the liquid and solid regimes for arbitrary magnetic field strengths.
The results of Hernquist (1984) are given for specific values of the field
strength. We calculate the conductivities using the formalism and assump-
tions outlined in Hernquist (1984) and extend his calculations to stronger
fields.

The conductivities of Hernquist (1984) and Potekhin & Yakovlev (1996)
do not differ in the physical processes considered in their calculation but
in the approximations employed. In the liquid state the conductivities of
Hernquist (1984) tend to be approximately 15% larger for the ground Lan-
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dau level and up to 40% larger for the excited levels than those of Potekhin
& Yakovlev (1996). In the solid state, the conductivities of Potekhin &
Yakovlev (1996) exceed those of Hernquist (1984) by a factor of several;
therefore, these two models span much of the uncertainty in these quanti-
ties.

In the liquid state, the differences arise from two sources. First, both
the fits of Hernquist (1984) and Potekhin & Yakovlev (1996) for the func-
tion ¢(E) are inaccurate to ~ 10%. Second, Hernquist (1984) assumes that
electron-ion scattering is screened by the ion sphere; this process dominates
in the liquid regime. Potekhin & Yakovlev (1996) include Debye and elec-
tron screening as well which dominate in the gaseous regime. Their results
are appropriate for both the gaseous and liquid regimes. In the solid regime,
Hernquist (1984) does not take the Debye-Waller factor into account. This
factor tends to increase the conductivity over a wide range of temperatures
and densities (Itoh et al. 1984, Potekhin & Yakovlev 1996).

Our iron envelope models are calculated by adopting a plane-parallel,
Newtonian approximation. Hernquist (1985) found that using Z = 26 and
A = 56 throughout is sufficient to accurately model the envelope. For
simplicity we fix Z and A to these values, rather than use the equilibrium
composition of Baym, Pethick & Sutherland (1971). In our approach, the
core temperature is a function of F/g,, B and 1 (the angle between the
radial and field directions). Here, F is the transmitted heat flux, g, is the
surface gravity, and all of these values are taken to be in the frame of the
neutron star surface — we have not applied the gravitational redshift to
transform from the surface to the observer’s frame.

For such strong fields, the models have a simple dependence on the an-
gle ; i.e. F/gs o cos? 1) (Greenstein & Hartke 1983, Page 1995, Shibanov
et al. 1995, Shibanov & Yakovlev 1996, Heyl & Hernquist 1997a) and fur-
thermore the flux for a fixed core temperature is approximately proportional
to BY4. With these two facts, we find that the average flux over the surface
of a neutron star with a dipole field configuration is 0.4765 times its peak
value at the magnetic poles. We neglect the effects of general relativity on
the field configuration, which tend to make the field more radial (Ginzburg
& Ozernoy 1964), increasing the effects discussed here.

Using these models, we have calculated a grid of theoretical envelopes
with average effective temperatures ranging from 10°* K to 10%-¢ K, corre-
sponding to a factor of ~ 10° in transmitted flux. We take g5 = g5,141014
cm/s2. In the left panel, Figure 11.1 depicts the ratio of the core temper-
ature to the zero-field case (Hernquist & Applegate 1984) as a function of
the magnetic field and the mean effective temperature Tes over the neutron
star. In the zero-field case, to determine the core temperature for a given
flux we combine equations (4.7) and (4.8) of Hernquist & Applegate (1984),
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Figure 11.1: The left panel depicts the ratio of the core temperature with
B # 0 to the zero-field case (Hernquist & Applegate 1984) using the con-
ductivities of Hernquist (1984). The right panel shows the results for the
Potekhin & Yakovlev (1996) conductivities.

switching from the first relation to the second when the surface effective
temperature drops below 4.25 x 10° K. The results do not depend qualita-
tively on whether equation (4.7) or (4.8) of Hernquist & Applegate (1984)
is used. The right panel shows the ratio of the core temperature with a
magnetic field to the zero-field case for the conductivities of Potekhin &
Yakovlev (1996).

For a given core temperature, the magnetized envelopes transmit more
heat than the unmagnetized envelopes. For example, an effective temper-
ature of 3.5 x 10% K corresponds to a core temperature of 1.1 x 10° K for
an unmagnetized envelope. With B = 10'® G, the core temperature is
5.3 x 108 K for the Hernquist (1984) conductivities and 5.8 x 10® K for
the Potekhin & Yakovlev (1996) ones. Because the Hernquist (1984) con-
ductivities in the liquid phase are ~ 20 % larger than those of Potekhin &
Yakovlev (1996), we find that the effective temperature is slightly higher
during the early cooling (t < 105 yr) of the neutron star if one uses the
values of Hernquist (1984).

For lower core temperatures, the insulating envelope is thinner and the
magnetic field has a stronger effect (Van Riper 1988); the difference in core
temperatures may be even more extreme, by up to a factor of four or ten
(for Hernquist 1984 and Potekhin & Yakovlev 1996 conductivities, respec-
tively) in the coolest envelopes considered here. For the cooler envelopes
the relationship between the effective temperature and the core temperature
is strongly sensitive to the conductivities in the solid phase; consequently,
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the Debye-Waller factor is most important during the later cooling of the
neutron star (¢t > 10° yr). Furthermore, during this late phase, the partial
ionization of iron may affect the equation of state as well as the electron
and photon conductivities. This area has not been thoroughly explored,
especially at high B.

For T, > 108 K, the dominant heat loss mechanism is through neutrino
emission (e.g. Shapiro & Teukolsky 1983) which has a cooling time pro-
portional to 7% for the modified URCA process. Because of this steep
power law, a factor of 1.9-2.1 difference in the core temperature (the first
example) would lead one to infer a cooling time of an ultramagnetized neu-
tron star 50-80 times greater than if one did not consider the effects of the
magnetic field on heat transport. And since neutrino cooling models gener-
ically have a cooling time proportional to T, ® with & = 4 — 6 (e.g. Shapiro
& Teukolsky 1983), one would generally underestimate the cooling ages of
ultramagnetized neutron stars by a large factor.

11.3 Thermal Evolution

For t > 10% yr, the neutron star interior has relaxed thermally (Nomoto &
Tsuruta 1981), we can use the flux-to-core-temperature relation for several
values of B including B = 0 to derive the relationship between Teg and
the cooling time. The technique is straightforward during the epoch of
neutrino cooling. However, since photon emission is enhanced, the epoch
of photon cooling will begin slightly earlier, and the time dependence of the
temperature will have a slightly different slope. For the neutrino cooling
model, we use the modified URCA process (e.g. Shapiro & Teukolsky 1983)

L, = (5.3 x 10%%erg/s) 2L ( Puc v T8 (11.1)
Y ' Mg \ p o '
where T,, = T/10” K.
To understand the evolution during the photon-cooling epoch, we take
into account the surface thermal emission of photons,

Tors M.

L., = 47 R*T% ~ 9.5 x 10%2erg s 1
o eff g gs.14 M@

(11.2)

and we take the total thermal energy of the neutron star to be (Shapiro &
Teukolsky 1983)

M —2/3
Up ~ 6 x 1047ergM—® (pp ) T2,. (11.3)
nuc
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Figure 11.2: The left panel depicts the evolution of the core temperature
with time for neutrino-dominated cooling (independent of B) and photon-
dominated cooling for several field strengths using the conductivities of
Hernquist (1984) (bold curves) and Potekhin & Yakovlev (1996) (light
curves). The right panel shows the evolution of the mean effective tem-
perature of the cooling neutron star for the neutrino and photon cooling
epochs. The bold and light curves designate the same models as in the left
panel.

Combining these equations yields

dUu,
— = —(L,+L 11.4
U (L + L) (11.4)
dTeo _ 1 1 Tgﬂ,e( P )2/3
dt Tc,9 4X107yr gs,14 \ Pnuc

1 ()" s

— T 11.

+8yr< P ) &9 (L5)

where p is the mean density of the neutron star, and ppue = 2.8x10* g cm 3.

Figure 11.2 shows the evolution of the core temperature and mean ef-
fective temperature at the surface. The evolution of the core temperature
is unaffected by the magnetic field during the neutrino-cooling epoch. For
fields approaching 10'® G, the magnetic field may begin to affect neutrino
emission (e.g. Bander & Rubinstein 1993). However, after approximately
108w yr, photon emission from the surface begins to dominate the evolution.
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Here,

o 2/3
w:(p ) Iots- (11.6)

The cooling is accelerated by the magnetic field. In the presence of a
1016 G field, the core reaches a temperature of 107 K in only 3—6 x 105w yr
compared to 6 x 10w yr for an unmagnetized neutron star. The bold curves
trace the cooling of the core using the Hernquist (1984) conductivities,
and the light curves follow the results for the Potekhin & Yakovlev (1996)
conductivities.

The effect is more dramatic when one compares the effective surface
temperatures of the models as a function of time. Again we present two
sets of models. The right panel compares the cooling evolution using the
conductivities of Hernquist (1984) (bold curves) and using those of Potekhin
& Yakovlev (1996) (light curves) in the degenerate regime.

During the neutrino-cooling epoch the ultramagnetized neutron stars
(B = 10'% G) have 45% higher effective temperatures and emit over four
times more radiation. Because during neutrino cooling the effective tem-
perature falls relatively slowly with time, one can make a large error in
estimating the age of the neutron star from its luminosity. For example, an
envelope with 10'® G field remains above a given effective temperature 40
times longer than an unmagnetized envelope. For 10'® G, the timescale is
increased by up to a factor of ten.

During the photon-dominated cooling era, the enhanced flux in a strong
magnetic field reverses this effect. Photon cooling begins to dominate after
about 10°w yr for 10'® G compared to 10w yr in the zero-field case. Once
photon cooling begins to dominate, the stars with stronger magnetic fields
cool more quickly. A star with a 10'® G field reaches a given effective
temperature 3-5 times faster than an unmagnetized star.

11.4 Discussion

Magnetic fields, especially those associated with magnetars, have a strong
effect on the observed thermal evolution of neutron stars. In agreement
with Shibanov & Yakovlev (1996), we find that during the neutrino cooling
epoch, neutron stars with strong magnetic fields are brighter than their
unmagnetized coevals. During the photon cooling epoch, the situation is
reversed. A strongly magnetized neutron star cools more quickly during
this era and emits less radiation at a given age.

It is difficult to compare our results more quantitatively with those of
Shibanov & Yakovlev (1996), because besides studying more weakly magne-
tized neutron stars, they make slightly different assumptions regarding the
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properties of the envelope, include general relativistic effects on the mag-
netic field geometry, and use the models of Van Riper (1988) which include
Coulomb corrections to the equation of state. For the larger fields investi-
gated here we do find a stronger effect than Shibanov & Yakovlev (1996);
however, the effect is not as strong as a naive power-law extrapolation from
10135 G (the largest field studied by Shibanov & Yakovlev 1996) to the ul-
tramagnetized regime would indicate. Usov (1997) also extrapolates results
at right field strengths and finds substantially larger photon luminosities
during the neutrino-cooling epoch than we do. Again, a straightforward ex-
trapolation from weaker fields overestimates the flux transmitted through
a magnetized envelope.

We do not find the net insulating effect that Tsuruta & Qin (1995)
find for weaker fields of 10'2 G. Shibanov & Yakovlev (1996) find a similar,
albeit much weaker effect, for fields ~ 101°—10'2 G. At these field strengths,
the classical decrement in the thermal conductivity transverse to the field
direction decreases the transmitted flux for a given core temperature. At
the much stronger fields examined here, the increase in conductivity along
the field lines (due to the quantization of the electron energies) dominates
the decrease for perpendicular transport (in using the cos? ¢ rule we have
neglected all heat transport perpendicular to the field lines).

Thompson & Duncan (1995) argue that soft gamma repeaters (SGRs)
are powered by magnetic reconnection events near the surfaces of ultram-
agnetized neutron stars. Furthermore, Ulmer (1994) finds that a strong
magnetic field can explain the super-Eddington radiation transfer in SGRs.
Rothschild, Kulkarni & Lingenfelter (1994) estimate the luminosity of SGR
0526-66 in the quiescent state to be approximately 7 x 103® erg/s. Since
SGR 0526-66 is located in a supernova remnant, they can also estimate
the age of the source to be approximately 5,000 years. For an isolated
neutron star cooling by the modified URCA process, after 5,000 years, one
would expect L., = 6 x 10%® erg/s for B =0 and L, = 3 x 10%* erg/s for
B = 106 G (we assume that the mass of the neutron star is 1.4M). Both
these estimates fall short of the observed value. Even if SGR 0526-66 is
powered by an ultramagnetized neutron star, its quiescent X-ray luminosity
does not originate entirely from the thermal emission from the surface of
the neutron star, unless either the age or luminosity estimates are in error
by an order of magnitude, or possibly it has an accreted envelope.

11.5 Conclusions

We extend the previous studies of neutron star cooling into the ultram-
agnetized or magnetar regime (B ~ 10' — 10! G) for iron envelopes.
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We find that such an intense magnetic field dramatically affects the ther-
mal evolution of a neutron star. In the neutrino-cooling epoch, effective
temperatures of ultramagnetized neutron stars are up to 40% larger than
their unmagnetized coevals. If the nucleons in the neutron star core are
superfluid, neutrino cooling is inhibited. This will also increase the surface
temperature at a given epoch.

Furthermore, if one assumes an unmagnetized evolutionary track for
an ultramagnetized neutron star, one would overestimate its age by up to
a factor of twenty five. During the photon-cooling epoch, the effect is re-
versed. Ultramagnetized neutron stars cool to a given effective temperature
three times faster than their unmagnetized counterparts.
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Chapter 12

Powering Anomalous
Xray Pulsars by Neutron
Star Cooling

SUMMARY

Using recently calculated analytic models for the thermal structure of ul-
tramagnetized neutron stars, we estimate the thermal fluzes from young
(t ~ 1000 yr) ultramagnetized (B ~ 105 G) cooling neutron stars. We
find that the pulsed X-ray emission from objects such as 1E 1841-045 and
1E 2259+586 as well as many soft-gamma repeaters can be explained by
photon cooling if the neutron star possesses a thin insulating envelope of
matter of low atomic weight at densities p < 107 — 10% g/em®. The total
mass of this insulating layer is M ~ 10711 — 1078 M.

12.1 Introduction

In recent years, several “breaking” (Mereghetti & Stella 1995) or “anoma-
lous” (Van Paradijs, Taam & van den Heuvel 1995) x-ray pulsars have
been discovered (Vasisht & Gotthelf 1997, Corbet et al. 1995). These ob-
jects typically have pulsed X-ray emission with steadily increasing periods
~ 10 s, X-ray luminosities ~ 103> — 1036 erg/s, soft spectra, and no detected
companions or accretion disks. Furthermore, they are typically observed
through hydrogen column densities ~ 10?2 cm~2 indicating that they are
not common. Vasisht & Gotthelf (1997) describe several of these sources
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and present observations of 1E 1841-045, whose properties are characteristic
of this class of objects.

Specifically, Vasisht & Gotthelf (1997) use archival observations of the
supernova remnant Kes 73 obtained with the ASCA and ROSAT satellites.
They find that the x-ray source in the center of the SNR, 1E 1841-045,
had a period of 11.766684 s from the ASCA data taken in 1993 October.
The ROSAT data of 1992 March is best fitted with a period of 11.7645 s,
yielding a period derivative of P ~ 4.73 x 10 !5 s~ and a characteristic
spin-down age of 4,000 yr — close to the estimated age for Kes 73 of 2,000 yr.
Using these values and assuming that magnetic dipole radiation dominates
the spin-down, they estimate the dipolar field strength of the neutron star
to be ~ 10'® G, well above the quantum critical field, B,, ~ 4.4 x 103 G.
Other anomalous x-ray pulsars (AXPs) generally have small ages and long
periods, leading one to derive similar field strengths.

With x-ray luminosities Ly ~ 1035 — 10%¢ erg/s, AXPs are underlumi-
nous relative to accretion powered X-ray pulsars and are generally isolated.
For 1E 1841-045, Vasisht & Gotthelf (1997) estimate a spin-down power of
103% erg/s which falls short of the observed luminosity. They also argue
that although 1E 1841-045 has a period near the equilibrium spin period
for a young pulsar with B ~ 10'2 G and Lx ~ 10%® erg/s, only an un-
likely evolutionary process could spin down the neutron star to this rate
within the 2,000 year age of Kes 73. They suggest that 1E 1841-045 may be
powered by magnetic field decay in a dipolar field of strength B ~ 10'% G
(Thompson & Duncan 1996, Goldreich & Reisenegger 1992).

In this Letter, we propose a natural explanation for the observed X-ray
emission from AXPs. Neutron stars with ages ~ 1,000 yr and magnetic
fields B > 10'S G have thermal emission in the X-ray-band with total
luminosities ~ 103 erg/s, if their surface layers consist of light-weight ma-
terial, such as hydrogen and helium. In previous papers, we have devel-
oped an analytic model for ultramagnetized neutron star envelopes (Heyl
& Hernquist 1997a) and calculated the emission through iron envelopes
and showed how a strong magnetic field affects neutron-star cooling (Heyl
& Hernquist 1997e). Here, we will examine the properties of ultramagne-
tized hydrogen and helium envelopes and draw parallels with the observed
properties of AXPs.

12.2 Model Envelopes

Heyl & Hernquist (1997a) have developed analytic models for ultramagne-
tized neutron star envelopes and find that the flux transmitted through the
envelope is simply related to the direction and strength of the magnetic
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field and to the core temperature (Ti.). Specifically, these models apply
only below densities pmax at which the ground Landau level becomes filled;
i.e. 2.2 x 108 — 7.1 x 10° g/cm? for polar fields, B = 10*® — 10'% G.

Here we consider hydrogen and helium envelopes with B ~ 10'® G
and core temperatures expected for cooling by the modified URCA process
after ~ 1,000 yr. Although our models do not extend to the high densities
traditionally associated with the isothermal core of a neutron star (p >
10'° g/cm3), for B ~ 10*® G and T, ~ 108 — 108 K, the envelope is nearly
isothermal at pmax. We denote the temperature at this density by Tmax
and for this analysis take it to be equal to the core temperature.

The envelope models are calculated using a plane-parallel, Newtonian
approximation. In this approach, the core temperature is a function of
F/g,, B and 1 (the angle between the radial and field directions). F is the
transmitted heat flux, g, is the surface gravity, and all of these values are
taken to be in the frame of the neutron star surface. For such strong fields,
the models have a simple dependence on the angle 1, i.e. F/g, o cos®1)
(Heyl & Hernquist 1997a, Shibanov et al. 1995, Shibanov & Yakovlev 1996)
and furthermore the flux for a fixed core temperature is approximately
proportional to B%4. With these two facts, we find that the average flux
over the surface of a neutron star with a dipole field configuration is 0.4765
times its peak value at the magnetic poles.

For a given core temperature, magnetized envelopes transmit more heat
than unmagnetized ones (e.g. Hernquist 1985). Furthermore, as Hernquist
& Applegate (1984) found, the relationship between the core temperature
and the transmitted flux is strongly sensitive to the composition of the
degenerate portion of the envelope, specifically iron insulates the core much
more effectively that hydrogen or helium. Because of the intense magnetic
field, the luminosities for a given core temperature are even larger than
those found by Potekhin, Chabrier & Yakovlev (1997).

12.3 Luminosity Evolution

We have calculated the expected luminosity of an ultramagnetized neutron
star as a function of time. We assume that the core of the neutron star
cools by only the modified URCA process (e.g. Shapiro & Teukolsky 1983),

AH(URCA) ~ 1 (pi:) o T8(f) {1 _ [?’QT(({))] 6} v, (12.1)

where T, =T/10% K and At is an estimate of the age of the neutron star.
For simplicity, we will assume that the initial temperature is much larger
than the current temperature T¢(f).
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If one ignores gravitational redshift effects which depend on the radius
of the neutron star, the photon luminosity is given by

F Togs M
L, =41nGM — ~ 9.5 x 10322205 = org 571 (12.2)
9s 9s,14 Mo

We will take M = 1.4Mg,.

Figure 12.1 depicts the photon luminosity and mean effective temper-
ature as a function of time for several field strengths with iron, helium,
and hydrogen envelopes. We see that the photon luminosity increases
with increasing magnetic field, but the composition of the envelope is a
more important effect. The luminosity through a hydrogen envelope is ten
times larger than through iron and 1.6 times larger than through helium.
The relationship between core temperature and flux is most sensitive to
the thermal conductivity in the liquid portion of the degenerate envelope
(Gudmundsson, Pethick & Epstein 1982). In this zone, the conductivity
is proportional to Z~!; consequently, low Z envelopes conduct heat more
readily.

To lowest order, for a given magnetic field strength and core tempera-
ture, the transmitted flux is proportional to Z—2/3. The dependence on Z/A
is weaker. The flux dips sharply for hydrogen and helium with B = 106 G,
when the material near the degenerate-non-degenerate interface begins to
solidify. At a given density the conductivity due to degenerate electrons is
smaller in the solid state than in the liquid phase.

We note that our assumption that the magnetic field has no explicit
influence on the phase of the matter is problematic for these intense fields.
For example, the magnetic field may well alter the state of the material
in the solid portion of the crust, particularly when the magnetic stress
exceeds the yield stress of the lattice. The shear modulus of the lattice
is p~ (Ze)2n42/ ® where nz is the ion number density (Ruderman 1972).
Assuming that the lattice breaks when the strain angle xs¢rain ~ 102, mag-
netic stresses dominate when (e.g. Blandford & Hernquist 1982; Blandford,
Applegate & Hernquist 1983)

2/3
B>12x102472/3 (hgc#) G, (12.3)

which is satisfied throughout the crust for fields B > 10'* G.

Even for the weakest field considered, B = 10'® G, the photon luminos-
ity through a hydrogen envelope is 1.5 x 10%° erg/s for an age of 2,000 yr.
This is comparable to both the pulsed X-ray pulsed luminosity of 1E 1841-
045 of Ly =~ 5 x 103*d2 erg/s (dy is the distance to the source divided by
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Figure 12.1: Photon luminosity and mean effective temperature as a func-
tion of the age of the neutron star. The upper bold curves trace the evo-
lution for hydrogen envelopes, the intermediate curves give the evolution
for helium envelopes and the lowest light curves follow the cooling through
iron envelopes. The values of ppax for hydrogen envelopes are given in the
legend.
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7 kpc) and the total X-ray luminosity of 3.5 x 10%5d2 erg/s, given observa-
tional uncertainty.

The photon luminosity is nearly large enough to account for the lumi-
nosity in the quiescent state of the soft gamma repeater (SGR 0526-66).
Several authors have advanced the view that strongly magnetized neutron
star power SGRs. For example, Thompson & Duncan (1995) propose that
soft gamma repeaters (SGRs) are powered by magnetic reconnection events
near the surfaces of ultramagnetized neutron stars. Ulmer (1994) finds that
a strong magnetic field can explain the super-Eddington radiation transfer
in SGRs. Rothschild, Kulkarni & Lingenfelter (1994) estimate the lumi-
nosity of SGR 0526-66 in the quiescent state to be approximately 7 x 103°
erg/s. Since SGR 0526-66 is located in a supernova remnant, they can also
estimate the age of the source to be approximately 5,000 years. For this
age and a magnetic field of B = 105G, we find a photon luminosity of
1.5 x 10% erg/s, not far short of the SGR’s quiescent luminosity.

12.4 Discussion

To determine the viability of our model for AXP emission, we must as-
certain whether or not neutron stars with B ~ 10'® G are likely to have
an insulating envelope of the required mass in low atomic weight matter.
From numerical experimentation, we have found that the relationship be-
tween the core temperature and the effective temperature is most sensitive
to the composition in the degenerate, liquid portion of the envelope; i.e. the
“sensitivity” region found by Gudmundsson, Pethick & Epstein (1982). The
density in this zone is approximately in the range 106 — 107 g/cm?®.

We can appeal to the equation of hydrostatic equilibrium to calculate
the total mass up to a certain density. If we assume that the envelope is
thin, we have

47 R?
Js

AM =

P, (12.4)

where R is the radius of the neutron star and P is the pressure at the given
depth. In the region of interest, the pressure is supplied by degenerate
electrons occupying the ground Landau level. In a strong magnetic field,
electrons become relativistic at

p~ 3.3 x 10" Bysp.g/cm®, (12.5)

where Bis = B/10" G and p. = A/Z is the mean atomic weight per
electron (e.g. Heyl & Hernquist 1997a).
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For nonrelativistic electrons the equation of state is
P, = 1.5 x 102 B2 % p3dynes/cm® for pg < 33Bys e, (12.6)

where pg = p/10® g/cm?3.
For densities pg > 33B15te, the electrons are relativistic, and we obtain
the equation of state,

P, = 7.5 x 102* B;;' . 2 p2dynes/cm”. (12.7)

Therefore, depending on the maximum density of the insulating layer, we
obtain for its total mass,

M —1
AM =71x10""°Rg (M—®> Br2u3ps Mg (12.8)

in the non-relativistic limit where M is the mass of the neutron star and
Rg = R/10°% cm. In the relativistic limit, we obtain

M —1
AM =3.5x10""%Rg (M—@) B u 2 pe M. (12.9)

At a minimum, the low-Z insulating layer must extend into the degenerate
portion of the envelope where pg ~ 10. The non-relativistic estimate for the
mass of this layer yields ~ 107! My for B = 10'5 G. If the layer extends
to the density at which the first Landau level fills (pg ~ 200) well into the
relativistic regime, AM ~ 10~8M, for B = 10" G.

The high temperatures accompanying core collapse are generally thought
to process the material that will comprise the neutron star envelope to nu-
clear statistical equilibrium; therefore, the envelope is expected to consist of
56Fe and heavier nuclei at higher densities (e.g. Shapiro & Teukolsky 1983).
A hydrogen or helium envelope must contain material accreted by the neu-
tron star from the interstellar medium or from the “detritus” of the su-
pernova. Even with an intense magnetic field to dramatically increase the
Alfven radius, a neutron star would require ~ 10% yr to accrete ~ 10~ M,
from the ISM, unless the neutron star were traveling through an unusually
dense region. For example,

' a0\ 23
M ~10~"n}/° RY® B{{*v/® (M—> Mg /yr, (12.10)
®©

where ny4 is the number density of the ISM in units of 10*cm =3, v; = v/107
cm/s, and v is the velocity of the neutron star. In such a dense medium, the
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neutron star could accrete the minimum required 10~ M, within &~ 1,000
years. If the nascent neutron star received a kick during the supernova
explosion, it could accrete material from the high density remnant of the
progenitor star. Duncan & Thompson (1992) argue that a strong magnetic
field B ~ 10'® G can cause the neutrino emission from the nascent neutron
star to be anisotropic; consequently, the neutron star would recoil at v ~
100 km/s relative to center of the explosion.

Chevalier (1989) modeled the accretion by a nascent neutron star or
black hole from the exploded envelope of SN 1987A. He found that ~ 0.1Mg
will fall back within several days of the explosion. For a typical type II su-
pernova which has an extended envelope, the total accreted mass may be
a factor of 100 smaller, yielding a total of 1073Mg of material to com-
prise the insulating layer. Although much of this material will have been
processed during the evolution of the star, the X-ray and gamma-ray light
curves of SN 1987A as well as numerical simulations indicate that heavy
and light elements mix during the explosion (McCray 1993 and references
therein); any unprocessed remnants of the progenitor star’s hydrogen en-
velope would quickly float to the surface (Lai & Salpeter 1997) and form a
hydrogen envelope on the neutron star. Even in an intense magnetic field,
pycnonuclear fusion reactions do not proceed quickly enough to substan-
tially process the accreted material within 1,000 yr (Heyl & Hernquist 1996;
Lai & Salpeter 1996). If insufficient hydrogen fell back, the photon lumi-
nosity for a helium envelope is only one third lower than that of a hydrogen
envelope; consequently, even a Type Ib supernova could result in a cooling-
powered neutron star with sufficient luminosity to be observed as an AXP.

Zavlin, Pavlov & Shibanov (1996) calculate several model atmospheres
for cooling neutron stars including hydrogen and helium for weak mag-
netic fields (B ~ 10% — 10'° G), and compare the emergent spectra with a
blackbody distribution. Because the opacity of a hydrogen or helium at-
mosphere drops quickly with photon energy, high energy photons originate
from deeper and hotter layers of the atmosphere; consequently, hydrogen
and helium atmospheres have spectra which peak at a higher frequency and
have stronger Wien tails than a blackbody spectrum with the same effec-
tive temperature (Romani 1987). Pavlov et al. (1996) convolve the spectra
from neutron star atmospheres consisting of hydrogen with the ROSAT re-
sponse function and find that the fitted values of Teg are 4.17 times higher
than the model value. The observed best-fit blackbody temperature for
the spectrum of 1E 2259+586 is 0.45 keV. This is about twice the effective
temperature of our model envelopes. The processing of the radiation by
the hydrogen atmosphere may account for this shift.

Furthermore, in the energy range of 1-10 keV, hydrogen spectra tend to
be less steep (S, oc »~?) than the equivalent blackbody spectra. Although
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they are not as shallow as the non-thermal tail observed in 1E 2259+586,
S, o v~—3, mechanisms in the magnetosphere probably contribute to the
high-energy emission.

An intense magnetic field induces a temperature variation across the
surface of the neutron star (Heyl & Hernquist 1997a). This gradient com-
bined with the limb darkening manifest in models of magnetized neutron
star atmospheres (Romani 1987, Zavlin, Pavlov & Shibanov 1996) can nat-
urally explain the observed pulsed fraction of Kes 73 of 35% (Vasisht &
Gotthelf 1997).

12.5 Conclusions

We find that young (¢ ~ 1,000 yr) neutron stars with strong magnetic
fields (B ~ 10*® G) and hydrogen or possibly helium envelopes have pho-
ton luminosities similar to those observed from anomalous X-ray pulsars
and soft-gamma repeaters in their quiescent state. The total mass of the
insulating layer is 107 — 1078M. A strongly magnetized neutron star
could accrete enough material from the ISM within 1,000 years only if the
ISM is sufficiently dense, n > 10*cm~3. However, sufficient material is ex-
pected to fall back onto the neutron star surface following the explosion of
massive stars.
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Chapter 13

What is the nature of
RX J

SUMMARY

RX J0720.4-3125 has recently been identified as a pulsating soft X-ray
source in the ROSAT all-sky survey with a period of 8.391 s. Its spec-
trum is well characterized by a black-body with a temperature of 8 x 10° K.
We propose that the radiation from this object is thermal emission from
a cooling neutron star. For this black-body temperature we can obtain a
robust estimate of the object’s age of ~ 3 x 10° yr, yielding a polar field
~ 10'* G for magnetic-dipole spin down and a value of P compatible with
current observations.

13.1 Introduction

“Breaking” (Mereghetti & Stella 1995) or “anomalous” (Van Paradijs, Taam
& van den Heuvel 1995) x-ray pulsars (AXPs) typically have pulsed X-
ray emission with steadily increasing periods ~ 10 s, X-ray luminosities
~ 1035 — 1036 erg/s, soft spectra, and no detected companions or accretion
disks. Haberl et al. (1997) have recently identified RX J0720.4-3125 as a
pulsating, soft X-ray source with a period of 8.391 s. They estimate its
bolometric luminosity to be 2.6 x 1031d3,, erg/s, where djoo is the object’s
distance in units of 100 pc.

Wang (1997) has proposed that accretion onto a weakly magnetized neu-
tron star powers RX J0720.4-3125, and that for the neutron star to spin
down to 8.391 s within a Hubble time, it either must have been born with a
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period ~ 0.5 s or have experienced magnetic field decay. Our proposal be-
gins with the second footnote of Wang (1997) which suggests the possibility
that RX J0720.4-3125 is powered by an internal heat source. We propose
that the neutron-star cooling powers RX J0720.4-3125. This would give it
an age ~ 3 x 10° yr, much younger than the Wang’s (1997) estimated age
> 10° yr.

13.2 Calculations

In a previous paper (Heyl & Hernquist 1997d), we have argued that AXPs
may be powered by neutron star cooling through an accreted envelope. Here
we examine the cooling evolution of neutron stars with polar field strengths
ranging from 0 to 10'® G. The zero field calculation is based on the envelope
model of Hernquist & Applegate (1984). The results of Hernquist (1985)
describe the model envelope for 10'3 G, and the ultramagnetized cases
(10 —10'6 G) are calculated from the models of Heyl & Hernquist (1997a).

We choose a simple cooling model with the modified URCA process
(Shapiro & Teukolsky 1983) and photon cooling competing (Heyl & Hern-
quist 1997e). Both the envelope calculations and the cooling calculations
are performed in the frame of the surface; consequently, the observed effec-

. . . . 1/4 .
tive temperature for a given core temperature is proportional to gs’~ (gs is
the gravitation acceleration at the surface) and (1 + z,) " where

2GM
-1 _

To obtain the effective temperature as observed at infinity for a given equa-
tion of state (i.e. M and R), these two corrections must be performed. Ad-
ditionally, since for a magnetized neutron star, the thermal emission is not
isotropic along the surface, we present the flux-weighted mean Teg over the
entire surface.

Figure 13.1 depicts the thermal evolution for several values of the mag-
netic field at the pole. We have assumed that g, = 10'* ¢cm/s®. The hori-
zontal line gives the value of Ty, = 8 x 10° K found by Haberl et al. (1997).
Depending on the size and mass of the neutron star, this line may move
up or down slightly; however, this will not strongly affect the age estimate
because temperature drops quickly with age for ¢+ > 3 x 10° yr. Addition-
ally, we see that near this temperature, neutrino cooling and photon cooling
both contribute; consequently, the temperature at this age does not depend
strongly on field strength or composition.

From these evolutionary tracks, we find that the age of RX J0720.4-3125
may range from 1.2 x 105 yr for a 10'* G field with a hydrogen envelope
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Figure 13.1: The curves trace the cooling evolution of isolated neutron
stars by the modified URCA process and the radiation of photons from the
surface for several field strengths with iron and hydrogen envelopes. The
horizontal line traces the observed surface temperature of RX J0720.4-3125
of 8 x 10°K.
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to 3.6 x 10° yr for an unmagnetized neutron star. The intense fields yield
ages intermediate to these. We will assume a polar field of 10'* G and
an iron envelope yielding an age estimate of 3.3 x 10° yr. With this age,
we can obtain an estimate of the magnetic field of the neutron star, if we
assume that its has spun down by magnetic dipole radiation (Shapiro &
Teukolsky 1983),

3Ic?

t=— =" (13.2)
B2RS sin”® a2

Solving for the magnetic field strength yields,

_ [31c3 P M\
Bysina = ([ ——5—5 =9.3 x 10"*G (M_@) X

R O\ 2 . ~1/2
13.
<106cm) (3.3 X 105yr) (13:3)

This age estimate also yields a value for P. For spin down by magnetic
dipole radiation,

T=—=2t 134

2 (13.4)

which yields P = 4.3 x 10~!3. This is consistent with the observed P =
—6.0— 0.8 x 10712,

13.3 Discussion

We present a simple model for RX J0720.4-3125. Its emission originates
from neutron-star cooling through a magnetized envelope. We derive a
magnetic field ~ 104G, an age ~ 3 x 105 yr and a period derivative of
4 x 10~!3. The primary contrast between the predictions of this model and
those of Wang (1997) is the value of P.

Wang (1997) argues that RX 0720.4-3125 is an old object, ¢ > 10° yr.
It initially had a much stronger field (~ 102 G) than at present. Before
decaying to ~ 10'° G, the magnetic field spun down the neutron star to its
present rate. Wang argues that accretion powers the present emission and
that a value of P < 1071% is consistent with this field-decay model.

Our prediction of P lies just within the current limits which Haberl
et al. (1997) obtained over a three-year baseline. An further round of obser-
vations within the next several years could determine whether RX J0720.4-
3125 is a middle-aged, isolated cooling neutron star or an ancient neutron
star accreting from the interstellar medium.
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